




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、chapter 6the laplace transform6.0 introductionn with laplace transform, we expand the application in which fourier analysis can be used.sten the laplace transform provides us with a representation for signals as linear combinations of complex exponentials of the form with s= + jn the laplace transfo
2、rm (拉普拉斯变换) is a generalization of the continuous-time fourier transform.6.1 the laplace transformlet s = + j, and using x(s) to denote this integral, we obtaindteetxtjt)(dtetxsxst)()(for some signals which have not fourier transforms, if we preprocess them by multiplying with a real exponential sig
3、nal , then they may have fourier transforms.tethe laplace transform of x(t) the laplace transform is an extension of the fourier transform; the fourier transform is a special case of the laplace transform when = 0.example 6.1consider the signal).()(tuetxtsesesdtedtetuesxtststssttt111)()(lim)(0)(0)(f
4、or convergence, we require that res + 0, or res , thus,1)(sssxreregion of convergence (roc ) (收敛域)example 6.2consider the signal).()(tuetxttststsstttessesdtedttueesxlim)(0)(0)(111)()(for convergence, we require that res + 0, or res 0 will also be in the roc; and the roc of a right-sided signal is a
5、right-half planeright-half plane. property 5: if x(t) is left sided, and if the line res = 0 is in the roc, then all values of s for which res 0 will also be in the roc; and the roc of a left-sided signal is a left-half planeleft-half plane.property 6: if x(t) is two sided, and if the line res = 0 i
6、s in the roc, then the roc will consist of a strip in the s-plane that includes the line res = 0. rreimlreimlrreimproperty 7: if the laplace transform x(s) of x(t) is rational, then its roc is bounded by poles or extends to infinity. in addition, no poles of x(s) are contained in the roc.property 8:
7、 if the laplace transform x(s) of x(t) is rational, then if x(t) is right sided, the roc is the region in the s-plane to the right of the rightmost pole. if x(t) is left sided, the roc is the region in the s-plane to the left of the leftmost pole.example 6.6let)2)(1(1)(sssxreims-planeroc correspondi
8、ng to a right-sided signal roc corresponding to a left-sided signal roc corresponding to a two-sided signal 6.3 the inverse laplace transformdesxsxtj)(21)(1 -fmultiplying both sides by , we obtain tedesxtxst)(21)(changing the variable of this integration from to s and using the fact that is constant
9、, so that ds = jd. jjstdsesxjtx)(21)(thus, the basic inverse laplace transform equation is:the inverse laplace transform equation states that x(t) can be represented as a weighted integral of complex exponentials. the formal evaluation of the integral for a general x(s) requires the use of contour i
10、ntegration(围线积分)(围线积分) in the complex plane. for the class of rational transforms, the inverse laplace transform can be determined by using the technique of partial-fraction expansion. tetx)(example 6.7let . 1re2,)2)(1(1)(ssssxperforming the partial-fraction expansion, we obtain )2(1) 1(1)(sssx. 12,
11、)2)(1(1)()()(2ssstuetuetxltttre, 1,11)(sstuelttre. 2,21)(2sstuelttrewhat if ? . 1re2,4)2)(1(1)(ssssssxexample 6.8let . 0re,) 1)(3(2)(2ssssssxcompute the x(t) with contour integration method. 3, 021ssx(s) has two first-order poles: and a second-order pole:. 14 , 3sfrom the residue theorem, 1,)(re3,)(
12、re0 ,)(re)(stststesxsesxsesxstx 320132)(0 ,)(re20sesssessxesxsstsststtstsststesesssesxsesxs323121312)(33,)(rettsststsstsststeteessstessssesssdsdesxsdsdesxs432132364)3(2)(1! 111,)(re1222112)(232112132)(,3tuetetxthustt . 0re1,) 1)(3(2)(2ssssssx . 3re,) 1)(3(2)(2ssssssxwhat if ?or ?)(2321121)(32)(3tuet
13、etutxtt)(232112132)(3tuetetxttorthen6.4 geometric evaluation of the fourier transform from the pole-zero plota general rational laplace transform has the form:)()()(sdsnsxpjjriissmsx11)()()(and it can be factored into the form: where i, j are zeros and poles of x(s), respectively. s1 re ims-plane1s1
14、spjjriijjmjx11)()()(,)(111pjjriibamjxripjjijx111)(argcomplex plane representation of the vectors s1, , and representing the complex numbers s1, and respectively. 1s1szero vectors(零点矢量)pole vectors(极点矢量)lets take an example to show how to evaluate the fourier transform from the pole-zero plot: . 1,)2
15、)(1(1)(ssssxregivengeometrically, from figure, we can write2122221)1)(2(1)(bbjx2111tan2tan)(argjx -2 -1reim s-plane21bj12bj21)(arg, 0)(arg)2,2,(,212121jxjxhoweverjxbb:0: , 21b,21jx0)(arg, 0, 021jx, 12b)(arg,2,221jx,21bb0jx)(argjx- |x(j)| 0 1/20 all-pass function:a laplace transform with all of its p
16、oles and zeros located on both sides of the j- axis symmetrically. and all the poles are on the left of the j- axis. all the zeros are on the right of the j- axis. *zzpp12216.5 properties of the laplace transform6.5.1 linearity6.5.2 time shiftingifand 111),()(rrocsxtxlt222),()(rrocsxtxltthen212121),
17、()()()(rrcontainingrocwithsbxsaxtbxtaxltnote: roc is at least the intersection of r1 and r2, which could be empty, also can be larger than the intersection. ifrrocsxtxlt),()(thenrrocsxettxstlt),()(006.5.3 shifting in the s-domain ifrrocsxtxlt),()(then 00),()(0srrocwithssxtxelttsre6.5.4 time scaling
18、ifrrocsxtxlt),()(thenrrocwithsxtxlt,1)(consequence: if x(t) is real and if x(s) has a pole or zero at s = s0 , then x(s) also has a pole or zero at the complex conjugate point s = s0*. 6.5.5 conjugation .),()(*rrocwithsxtxlt when x(t) is real: )()(*sxsxrrocwithsxtxlt),()(consequence:6.5.6 convolutio
19、n property if111),()(rrocsxtxltand 222),()(rrocsxtxltthen212121),()()()(rrcontainingrocwithsxsxtxtxlt6.5.7 differentiation in the time domain ifrrocsxtxlt),()(thenrcontainingrocwithssxdttdxlt),()(6.5. 8 differentiation in the s-domain rrocdssdxttxlt,)()(6.5.9 integration in the time domain .0,)()(sr
20、containingrocwithssxdxtltre6.5.10 the initial- and final-value theorems(初值和终值(初值和终值定理)定理) initial-value theorem :)()0(limssxxsfinal -value theorem :)()(limlim0ssxtxstexample 6.9 consider the signal).1()()(tututxwe know0,1)(sstultre, 0,1) 1(sestusltreand from the time shifting property,so that.,111)(
21、planesentirerocseesssxssexample 6.10 determine the laplace transform of).()(tutetxtsince,1)(sstuelttrefrom the differentiation in the s-domain property,.,11)(2sssdsdtutelttrein fact, by repeated application of this property, we obtain,)(1)()!1(1sstuentnlttnreexample 6.11use the initial-value theorem
22、 to determine the initial-value of)()3(cos)()(2tutetuetxtt2201441252)()0(2323limlimssssssssxxss. 1,)2)(102(1252)()3(cos)(222sssssstutetueltttreexample 6.12determine the laplace transform of the causal periodic signal x(t) which is depicted in the following figure:)2()()()(000ttxttxtxtxtstsesxesxsxsx
23、2000)()()()(1)(20tstseesxstesx1)(0 0 t 2t t)(tx 0re11)(0sesxst 0 t 2t t)(txconsider:consider: whats the lt of the periodic signal in the following figure?6.6 analysis and characterization of lti systems using the laplace transform the laplace transforms of the input and the output of an lti system a
24、re related through multiplication by the laplace transform of the impulse response of the system. y(s) = h(s) x(s) the roc associated with the system function for a causal system is a right-half plane.an roc to the right of the rightmost pole does not guarantee that a system is causal. for a system
25、with a rational system function, causality of the system is equivalent to the roc being the right-half plane to the right of the rightmost pole.system function(transfer function)example 6.13consider a system with impulse response ).()()21(tuethtjsince h(t) = 0 for t 0, this system is causal. the sys
26、tem function: , 1,211)(sjsshreit is rational and the roc is to the right of the rightmost pole, consistent with our statement. example 6.14consider the system function . 1,1)(sseshsrefor this system, the roc is to the right of the rightmost pole. the impulse response associated with the system),1()(
27、) 1(tuethtit is nonzero for 1 t 1. )()(2tueetxtt thus,unilateral laplace transform provide us with information about signals only for .0texample 6.23consider the unilateral laplace transform .23)(2sssx212)(sssxtaking inverse transforms of each term results in)()()(2)(2tuetttxt6.9.1 properties of the
28、 unilateral laplace transform time scaling:0),(1)(aasaatxulxconvolution: assuming that x1(t) and x2(t) are identically zero for t 0. )()()()(2121sstxtxulxxdifferentiation in the time domain :)0()()(xsstxdtdulx).0()()()(101knkknnulnnxssstxdtdx proof of this property for first-derivative of x(t):0)()(
29、dtedttdxdttdxstul0)(tdxest0)()(0dtetxsetxstst)0()(xssx similarly, the unilateral laplace transform of second-derivative of x(t) can be obtained by repeating using the property:).0()0()()0()0()()(222xsxssxxsssdttxdxxul6.9.2 solving differential equations using the unilateral laplace transformexample 6.24consider the system characterized by the differential equation ),()(2)(3)(22txtydttdydttydwith initial conditions.)0(,)0(yylet x(t) = u(t). determine the output y(t).applying the unilate
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023国家能源投资集团有限责任公司第一批社会招聘笔试备考试题及完整答案详解一套
- 2025年黑龙江省五常市辅警招聘考试试题题库完整答案详解
- 2025年Z世代消费趋势预测:新消费品牌发展前景深度报告
- 2025年K2学校STEM课程实施效果评估与教育评价体系创新实践报告
- 慢性阻塞性肺疾病诊治指南变迁2025
- 《模拟导游教程》中职旅游管理专业全套教学课件
- 宪法学试题及参考答案
- 广东省清远市佛冈县高中联考2024-2025学年高一下学期6月月考英语试卷
- 2025年重庆市西南大学附属中学中考三模道德与法治试卷(含答案)
- 2024-2025福建省厦门市集美中学高一下6月英语月考英语试卷
- 公司对项目部安全检查和整改记录表
- 安全风险评价风险矩阵法LEC法
- 小学心理健康教育-我会举手发言教学设计学情分析教材分析课后反思
- 基于MATLAB仿真的烤箱的温度控制分析
- 22S803 圆形钢筋混凝土蓄水池
- 东南大学高等数学实验报告-2
- 人力资源管理:基于创新创业视角学习通超星课后章节答案期末考试题库2023年
- 离心泵检修课件
- 江苏省连云港市海州区2022-2023学年八年级下学期期末数学试题(含答案)
- 西师版小学数学-毕业总复习资料
- 气瓶内残液残气处理操作规程
评论
0/150
提交评论