




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、chapter 6the laplace transform6.0 introductionn with laplace transform, we expand the application in which fourier analysis can be used.sten the laplace transform provides us with a representation for signals as linear combinations of complex exponentials of the form with s= + jn the laplace transfo
2、rm (拉普拉斯变换) is a generalization of the continuous-time fourier transform.6.1 the laplace transformlet s = + j, and using x(s) to denote this integral, we obtaindteetxtjt)(dtetxsxst)()(for some signals which have not fourier transforms, if we preprocess them by multiplying with a real exponential sig
3、nal , then they may have fourier transforms.tethe laplace transform of x(t) the laplace transform is an extension of the fourier transform; the fourier transform is a special case of the laplace transform when = 0.example 6.1consider the signal).()(tuetxtsesesdtedtetuesxtststssttt111)()(lim)(0)(0)(f
4、or convergence, we require that res + 0, or res , thus,1)(sssxreregion of convergence (roc ) (收敛域)example 6.2consider the signal).()(tuetxttststsstttessesdtedttueesxlim)(0)(0)(111)()(for convergence, we require that res + 0, or res 0 will also be in the roc; and the roc of a right-sided signal is a
5、right-half planeright-half plane. property 5: if x(t) is left sided, and if the line res = 0 is in the roc, then all values of s for which res 0 will also be in the roc; and the roc of a left-sided signal is a left-half planeleft-half plane.property 6: if x(t) is two sided, and if the line res = 0 i
6、s in the roc, then the roc will consist of a strip in the s-plane that includes the line res = 0. rreimlreimlrreimproperty 7: if the laplace transform x(s) of x(t) is rational, then its roc is bounded by poles or extends to infinity. in addition, no poles of x(s) are contained in the roc.property 8:
7、 if the laplace transform x(s) of x(t) is rational, then if x(t) is right sided, the roc is the region in the s-plane to the right of the rightmost pole. if x(t) is left sided, the roc is the region in the s-plane to the left of the leftmost pole.example 6.6let)2)(1(1)(sssxreims-planeroc correspondi
8、ng to a right-sided signal roc corresponding to a left-sided signal roc corresponding to a two-sided signal 6.3 the inverse laplace transformdesxsxtj)(21)(1 -fmultiplying both sides by , we obtain tedesxtxst)(21)(changing the variable of this integration from to s and using the fact that is constant
9、, so that ds = jd. jjstdsesxjtx)(21)(thus, the basic inverse laplace transform equation is:the inverse laplace transform equation states that x(t) can be represented as a weighted integral of complex exponentials. the formal evaluation of the integral for a general x(s) requires the use of contour i
10、ntegration(围线积分)(围线积分) in the complex plane. for the class of rational transforms, the inverse laplace transform can be determined by using the technique of partial-fraction expansion. tetx)(example 6.7let . 1re2,)2)(1(1)(ssssxperforming the partial-fraction expansion, we obtain )2(1) 1(1)(sssx. 12,
11、)2)(1(1)()()(2ssstuetuetxltttre, 1,11)(sstuelttre. 2,21)(2sstuelttrewhat if ? . 1re2,4)2)(1(1)(ssssssxexample 6.8let . 0re,) 1)(3(2)(2ssssssxcompute the x(t) with contour integration method. 3, 021ssx(s) has two first-order poles: and a second-order pole:. 14 , 3sfrom the residue theorem, 1,)(re3,)(
12、re0 ,)(re)(stststesxsesxsesxstx 320132)(0 ,)(re20sesssessxesxsstsststtstsststesesssesxsesxs323121312)(33,)(rettsststsstsststeteessstessssesssdsdesxsdsdesxs432132364)3(2)(1! 111,)(re1222112)(232112132)(,3tuetetxthustt . 0re1,) 1)(3(2)(2ssssssx . 3re,) 1)(3(2)(2ssssssxwhat if ?or ?)(2321121)(32)(3tuet
13、etutxtt)(232112132)(3tuetetxttorthen6.4 geometric evaluation of the fourier transform from the pole-zero plota general rational laplace transform has the form:)()()(sdsnsxpjjriissmsx11)()()(and it can be factored into the form: where i, j are zeros and poles of x(s), respectively. s1 re ims-plane1s1
14、spjjriijjmjx11)()()(,)(111pjjriibamjxripjjijx111)(argcomplex plane representation of the vectors s1, , and representing the complex numbers s1, and respectively. 1s1szero vectors(零点矢量)pole vectors(极点矢量)lets take an example to show how to evaluate the fourier transform from the pole-zero plot: . 1,)2
15、)(1(1)(ssssxregivengeometrically, from figure, we can write2122221)1)(2(1)(bbjx2111tan2tan)(argjx -2 -1reim s-plane21bj12bj21)(arg, 0)(arg)2,2,(,212121jxjxhoweverjxbb:0: , 21b,21jx0)(arg, 0, 021jx, 12b)(arg,2,221jx,21bb0jx)(argjx- |x(j)| 0 1/20 all-pass function:a laplace transform with all of its p
16、oles and zeros located on both sides of the j- axis symmetrically. and all the poles are on the left of the j- axis. all the zeros are on the right of the j- axis. *zzpp12216.5 properties of the laplace transform6.5.1 linearity6.5.2 time shiftingifand 111),()(rrocsxtxlt222),()(rrocsxtxltthen212121),
17、()()()(rrcontainingrocwithsbxsaxtbxtaxltnote: roc is at least the intersection of r1 and r2, which could be empty, also can be larger than the intersection. ifrrocsxtxlt),()(thenrrocsxettxstlt),()(006.5.3 shifting in the s-domain ifrrocsxtxlt),()(then 00),()(0srrocwithssxtxelttsre6.5.4 time scaling
18、ifrrocsxtxlt),()(thenrrocwithsxtxlt,1)(consequence: if x(t) is real and if x(s) has a pole or zero at s = s0 , then x(s) also has a pole or zero at the complex conjugate point s = s0*. 6.5.5 conjugation .),()(*rrocwithsxtxlt when x(t) is real: )()(*sxsxrrocwithsxtxlt),()(consequence:6.5.6 convolutio
19、n property if111),()(rrocsxtxltand 222),()(rrocsxtxltthen212121),()()()(rrcontainingrocwithsxsxtxtxlt6.5.7 differentiation in the time domain ifrrocsxtxlt),()(thenrcontainingrocwithssxdttdxlt),()(6.5. 8 differentiation in the s-domain rrocdssdxttxlt,)()(6.5.9 integration in the time domain .0,)()(sr
20、containingrocwithssxdxtltre6.5.10 the initial- and final-value theorems(初值和终值(初值和终值定理)定理) initial-value theorem :)()0(limssxxsfinal -value theorem :)()(limlim0ssxtxstexample 6.9 consider the signal).1()()(tututxwe know0,1)(sstultre, 0,1) 1(sestusltreand from the time shifting property,so that.,111)(
21、planesentirerocseesssxssexample 6.10 determine the laplace transform of).()(tutetxtsince,1)(sstuelttrefrom the differentiation in the s-domain property,.,11)(2sssdsdtutelttrein fact, by repeated application of this property, we obtain,)(1)()!1(1sstuentnlttnreexample 6.11use the initial-value theorem
22、 to determine the initial-value of)()3(cos)()(2tutetuetxtt2201441252)()0(2323limlimssssssssxxss. 1,)2)(102(1252)()3(cos)(222sssssstutetueltttreexample 6.12determine the laplace transform of the causal periodic signal x(t) which is depicted in the following figure:)2()()()(000ttxttxtxtxtstsesxesxsxsx
23、2000)()()()(1)(20tstseesxstesx1)(0 0 t 2t t)(tx 0re11)(0sesxst 0 t 2t t)(txconsider:consider: whats the lt of the periodic signal in the following figure?6.6 analysis and characterization of lti systems using the laplace transform the laplace transforms of the input and the output of an lti system a
24、re related through multiplication by the laplace transform of the impulse response of the system. y(s) = h(s) x(s) the roc associated with the system function for a causal system is a right-half plane.an roc to the right of the rightmost pole does not guarantee that a system is causal. for a system
25、with a rational system function, causality of the system is equivalent to the roc being the right-half plane to the right of the rightmost pole.system function(transfer function)example 6.13consider a system with impulse response ).()()21(tuethtjsince h(t) = 0 for t 0, this system is causal. the sys
26、tem function: , 1,211)(sjsshreit is rational and the roc is to the right of the rightmost pole, consistent with our statement. example 6.14consider the system function . 1,1)(sseshsrefor this system, the roc is to the right of the rightmost pole. the impulse response associated with the system),1()(
27、) 1(tuethtit is nonzero for 1 t 1. )()(2tueetxtt thus,unilateral laplace transform provide us with information about signals only for .0texample 6.23consider the unilateral laplace transform .23)(2sssx212)(sssxtaking inverse transforms of each term results in)()()(2)(2tuetttxt6.9.1 properties of the
28、 unilateral laplace transform time scaling:0),(1)(aasaatxulxconvolution: assuming that x1(t) and x2(t) are identically zero for t 0. )()()()(2121sstxtxulxxdifferentiation in the time domain :)0()()(xsstxdtdulx).0()()()(101knkknnulnnxssstxdtdx proof of this property for first-derivative of x(t):0)()(
29、dtedttdxdttdxstul0)(tdxest0)()(0dtetxsetxstst)0()(xssx similarly, the unilateral laplace transform of second-derivative of x(t) can be obtained by repeating using the property:).0()0()()0()0()()(222xsxssxxsssdttxdxxul6.9.2 solving differential equations using the unilateral laplace transformexample 6.24consider the system characterized by the differential equation ),()(2)(3)(22txtydttdydttydwith initial conditions.)0(,)0(yylet x(t) = u(t). determine the output y(t).applying the unilate
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB14-T 3371-2025 旱地叶用紫苏栽培技术规程
- 高中语文统编版必修上册8.3《琵琶行》
- 车辆质押抵押贷款服务协议
- 餐饮品牌区域代理权及市场开发合作协议
- 智能停车场车位投资合作协议
- 城市道路玻璃护栏维修保养协议
- 餐饮连锁品牌特许经营合同样本
- 生态旅游项目用地租赁合同
- 反担保条款在知识产权转让合同中的应用
- 矿业采矿权出让与安全生产责任书
- T-CECS 10400-2024 固废基胶凝材料
- 八年级语文上册第四单元整体公开课一等奖创新教学设计
- 智慧小区建设方案
- 2025年电潜螺杆泵项目可行性研究报告
- 2024国家安全教育大学生读本题库
- 肝门部胆管癌诊断和治疗指南(2025版)解读
- 新版统编版一年级道德与法治下册全册教案(完整版)教学设计含教学反思
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 财务服务协议书
- YC/Z 623-2024烟草商业企业卷烟物流应急作业指南
- 物联网安全风险与防护
评论
0/150
提交评论