小升初数学总复习专题讲解及训练2(数学)_第1页
小升初数学总复习专题讲解及训练2(数学)_第2页
小升初数学总复习专题讲解及训练2(数学)_第3页
小升初数学总复习专题讲解及训练2(数学)_第4页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小学数学总复习专题讲解及训练(三)模拟试卷一、基本训练:1 、找出下列各题中的单位“ 1。”男生人数占女生人数60% 。男生人数比女生人数多20% 。女生人数比男生人数少25% 。加工一批零件,已完成了80% 。今年的猪肉单价比去年上涨了80% 。2 、根据所给信息,说出数量间的相等关系一条路,已修了全长的 60%一种彩电,现价比原价降低10%松树的棵数比柏树多133 、看图列式。用去30%?只灰兔比灰兔多25%用去?吨还剩28吨白兔30 只4 、列式计算:( 1 )一个数的 75% 比 30 的 25% 多 1.5 ,求这个数。( 2 )一个数的 25% 比它的 75% 少 30 ,求这个数

2、。二、解决问题:1 、对比练习1/23( 1 )某工厂六月份用煤60 吨,六月份比五月份少用煤25 ,五月份用煤多少吨?( 2 )某工厂六月份用煤60 吨,五月份比六月份多用煤25 ,五月份用煤多少吨?2 、一张课桌比一把椅子贵10 元,如果椅子的单价是课桌单价的60% ,课桌和椅子的单价各是多少元?3 、果园里的梨树和苹果树共有360 棵,其中的苹果树的棵树是梨树的棵树的20% 。苹果树和梨树各有多少棵?4、一套桌椅的价格是 78 元,其中椅子的价格是桌子的30% 。桌子和椅子的价格各是多少元?5、一条绳子,第一次剪去全长的25% ,第二次剪去全长的 35% ,两次共剪去 6M ,这条绳子共

3、长多少M ?6 、一条绳子,第一次剪去全长的25% ,第二次剪去全长的35% ,第二次比第一次多剪了1M ,这条绳子长多少 M?7 、根据问题列式。平山茶场去年原计划种茶20 公顷,实际种茶25 公顷, _?实际种茶的公顷数是原计划的百分之几?计划种茶的公顷数是实际的百分之几?实际种茶的公顷数比原计划多百分之几?计划种茶的公顷数比实际少百分之几?8 、根据算式填条件果园里有苹果树200 棵,梨树有多少棵? 200÷ 20%2/23 200× 20% 200÷ (1+20% ) 200÷ (1-20% ) 200× (1-20% ) 200

4、15; (1+20% )参考答案:一、基本训练:1 、找出下列各题中的单位“ 1。”男生人数占女生人数60% 。把女生人数看作单位“1”男生人数比女生人数多20% 。 把女生人数看作单位“1”女生人数比男生人数少25% 。 把男生人数看作单位“1”加工一批零件,已完成了80% 。把一批零件看作单位“1”今年的猪肉单价比去年上涨了80% 。把去年的猪肉单价看作单位“1”2 、根据所给信息,说出数量间的相等关系一条路,已修了全长的60%全长×60% =已修一种彩电,现价比原价降低10%原价 × 10% =降价原价×(1-10% ) = 现价松树的棵数比柏树多13柏树

5、× 13 =松树比柏树多的棵数柏树×(1+13)= 松树3 、看图列式。用去30%?只灰兔比灰兔多25%用去?吨还剩28吨白兔3/2328(1 ÷-30% ) ×30% = 12(吨)30只 + 25 = 30 = 244 、列式计算:( 1 )一个数的75% 比 30 的 25% 多 1.5 ,求这个数。 75 30 × 25% = 1.5 = 12( 2 )一个数的25% 比它的 75% 少 30 ,求这个数。 75 25% = 30 = 60二、解决问题:1 、对比练习( 1 )某工厂六月份用煤60吨,六月份比五月份少用煤25 ,五月份用

6、煤多少吨?解:设五月份用煤吨。 25% = 60 = 80( 2 )某工厂六月份用煤60吨,五月份比六月份多用煤25 ,五月份用煤多少吨?60+60×25% = 75 (吨)2 、一张课桌比一把椅子贵10 元,如果椅子的单价是课桌单价的60% ,课桌和椅子的单价各是多少元?解:设课桌的单价是元,椅子的单价是60% 元。 60% = 10 = 2525×60% = 15(元)或25 10 = 15(元)答:课桌的单价是25 元,椅子的单价是15 元。4/233 、果园里的梨树和苹果树共有360 棵,其中的苹果树的棵树是梨树的棵树的20% 。苹果树和梨树各有多少棵?解:设梨树的

7、棵树是棵,苹果树的棵树是20% 棵。 + 20% = 360 = 300300×20% = 60(棵)或 360300 = 60(棵)答:梨树的棵树是300棵,苹果树的棵树是60 棵。4 、一套桌椅的价格是78 元,其中椅子的价格是桌子的30% 。桌子和椅子的价格各是多少元?解:设课桌的单价是元,椅子的单价是30% 元。 + 30% = 78 = 6060×30% = 18(元)或78 60 = 18(元)答:课桌的单价是60 元,椅子的单价是18 元。5 、一条绳子,第一次剪去全长的25% ,第二次剪去全长的35% ,两次共剪去6M ,这条绳子共长多少M ?解:设这条绳子

8、共长M。25% + 35% = 6 = 10答:这条绳子共长10M 。6 、一条绳子,第一次剪去全长的25% ,第二次剪去全长的35% ,第二次比第一次多剪了1M ,这条绳子长多少 M?解:设这条绳子共长M。5/2335% - 25% = 1 = 10答:这条绳子共长10M 。7 、根据问题列式。平山茶场去年原计划种茶20 公顷,实际种茶 25公顷, _?实际种茶的公顷数是原计划的百分之几?25÷ 20 = 125%计划种茶的公顷数是实际的百分之几?20÷25 = 80%实际种茶的公顷数比原计划多百分之几?( 25 20 ) ÷20 = 25%计划种茶的公顷数比实

9、际少百分之几?( 2520 ) ÷25 = 20%8 、根据算式填条件果园里有苹果树 200棵,梨树有多少棵? 200÷ 20%苹果树是梨树的20% 200× 20%梨树是苹果树的20% 200÷ (1+20%)苹果树比梨树多20% 200÷ (1-20%)苹果树比梨树少20% 200× (1-20%)梨树比苹果树少20% 200× (1+20%)梨树比苹果树多20%小学数学总复习专题讲解及训练(四)主要内容圆柱和圆锥的认识、圆柱的表面积学习目标1 、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥

10、的底面、侧面和高。6/232 、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。3 、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。4 、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。考点分析1 、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。形成圆柱的面还有一个曲面,叫做圆柱的侧面。圆柱两个底面之间的距离叫做圆柱的高。2 、圆锥的底面是个圆,圆锥的侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。3 、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽

11、等于圆柱的高。4 、圆柱的侧面积 = 底面周长 ×高5 、圆柱的表面积 = 侧面积 + 底面积 ×2典型例题例 1 、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。圆柱和圆锥的特征见下表。圆柱圆锥底面 两个底面完全相同,都是圆形。一个底面,是圆形。侧面 曲面,沿高剪开,展开后是长方形。曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。高 两个底面之间的距离,有无数条。顶点到底面圆心的距离,只有一条。例 2 、求下面立体图形的底面周长和底面积。半径3厘M直

12、径10M7/23分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。圆柱:底面周长3.14×3×2 = 18.84 (厘 M )底面积3.14×3 2 = 28.26(平方厘 M)圆锥:底面周长3.14×10 = 31.4(M )底面积3.14×( 10÷ 2)2 = 78.5(平方 M)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。例 3 、判断:圆柱和圆锥都有无数条高。错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。正确解答:错误点评:圆柱两个底面之间的距离

13、叫做圆柱的高。两个底面之间有无数个对应的点,圆柱有无数条高。从圆锥的顶点到底面圆心的距离是圆锥的高。顶点和底面圆心都是唯一的点,所以圆锥只有一条高。例 4 、(圆柱的侧面积)体育一个圆柱,底面直径是5 厘 M,高是 12 厘 M。求它的侧面积。分析与解:高底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。解答: 3.14× 5× 12 = 188.4(平方厘M)答:它的侧面积是188.4平方厘 M 。点评:圆柱的侧面是个曲面,不能直接求出它

14、的面积。推导出侧面积的计算公式也用到了转化的思想。把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面积就是这个圆柱的侧面积。8/23例 5 、(圆柱的表面积)做一个圆柱形油桶,底面直径是0.6M ,高是 1M ,至少需要多少平方M 铁皮?(得数保留整数)分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。解答:底面积:3.14×( 0.6 ÷2 ) 2 = 0.2826(平方 M)侧面积: 3.14× 0.6×1 = 1.884(平方 M)表面积: 0.2826× 2 + 1.884 = 2.449

15、2(平方 M) 3(平方 M)答:至少需要铁皮3平方 M。点评:这里不能用四舍五入法取近似值。因为在实际生活中使用的材料要比计算得到的结果多一些。因此这儿保留整数,十分位上虽然是4 ,但也要向个位进1 。例 6 、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30 厘 M,高是 50厘 M 。做这样一个水桶,至少需用铁皮 6123平方厘 M。分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。在计算铁皮面积时只要用圆柱的侧面积加上一个底面的面积。解答:底面积:3.14×( 30÷ 2 ) 2 = 706.5(平方厘 M )侧面积: 3.14× 30×

16、50 = 4710(平方厘M)表面积: 706.5 + 4710 = 5416.5(平方厘M)答:做这样一个水桶,至少需用铁皮5416.5平方厘 M。例 7 、(考点透视)一个圆柱的侧面积展开是一个边长15.7 厘 M 的正方形。这个圆柱的表面积是多少平方厘 M?分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7 厘 M 。根据圆柱的底面周长可以算出底面积。9/23解答:底面半径:15.7 ÷ 3.14÷ 2 = 2.5(厘 M )底面积: 3.14×2.5 2 = 19.625(平方厘M)侧面积: 15.7 × 15.7 = 24

17、6.49(平方厘M )表面积: 19.625 ×2 + 246.49 = 285.74(平方厘M )答:这个圆柱的表面积是285.74平方厘 M。例 8 、(考点透视)一个圆柱形的游泳池,底面直径是10M ,高是 4M 。在它的四周和底部涂水泥,每千克水泥可涂5 平方 M ,共需多少千克水泥?分析与解:要求水泥的质量,先要求水泥的面积。在圆柱形的游泳池的四周和底部涂水泥,涂水泥的面积是一个底面积加上侧面积。解答:侧面积: 3.14 × 10 × 4 = 125.6(平方 M)底面积: 3.14 × (10 ÷ 2)2 = 78.5(平方 M)涂

18、水泥的面积:125.6 + 78.5 = 204.1(平方 M)水泥的质量:204.1 ÷ 5 = 40.82(千克)答:共需 40.82千克水泥。例 9 、(考点透视)把一个底面半径是2 分 M ,长是 9 分 M 的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分M ?分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。锯成三段,要锯两次,每锯一次增加两个面,锯了两次增加了四个面。3.14×2 24×= 50.24(平方分M )答:表面积增加了50.24平方分 M 。点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每

19、切一次就增加两个面。但切的方式不同,增加的面也不同。如果是沿着底面直径把圆柱切成相同的两个部分,增加的面就是以底面直径和高为两邻边的长方形。10/23小学数学总复习专题讲解及训练(四)模拟试卷下面 () 图形旋转会形成圆柱。3 、在下图中,以直线为轴旋转,可以得出圆锥的是()。4 、求下列圆柱体的侧面积( 1)底面半径是 3 厘 M,高是 4 厘 M。( 2)底面直径是 4 厘 M,高是 5 厘 M。( 3 )底面周长是 12.56 厘 M ,高是 4 厘 M 。5 、求下列圆柱体的表面积( 1)底面半径是 4 厘 M,高是 6 厘 M。( 2)底面直径是 6 厘 M,高是 12 厘 M。(

20、3 )底面周长是 25.12 厘 M ,高是 8 厘 M 。6 、用铁皮制作一个圆柱形烟囱,要求底面直径是3 分 M,高是 15 分 M ,制作这个烟囱至少需要铁皮多少平方分 M ?(接头处不计,得数保留整平方分M)7 、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。8 、一个圆柱形蓄水池,底面周长是25.12M,高是 4M ,将这个蓄水池四周及底部抹上水泥。如果每平方 M 要用水泥 20 千克,一共要用多少千克水泥?参考答案:11/23上图上面从左到右依次是:底面、侧面积中间从左到右依次是:高、高下面从左到右依次是:底面、底面周长、底面周长下面 ( A) 图形旋转会形成圆柱。

21、3 、在下图中,以直线为轴旋转,可以得出圆锥的是()。4 、求下列圆柱体的侧面积( 1 )底面半径是3厘 M,高是 4厘 M 。3.14×3× 2×4 = 75.36(厘 M)( 2 )底面直径是4厘 M,高是 5厘 M 。3.14×4× 5 = 62.8(厘 M)( 3 )底面周长是12.56 厘 M ,高是 4 厘 M 。 12.56 × 4 = 50.24(厘 M)5 、求下列圆柱体的表面积(1)底面半径是4 厘 M,高是 6 厘 M。底面积: 3.14 × 4 2 = 50.24(平方厘M)侧面积: 3.14 

22、15; 4×2× 6 = 150.72(平方厘M )表面积: 50.24 × 2 + 150.72 = 251.2(平方厘M )(2)底面直径是6 厘 M,高是 12 厘 M。底面积: 3.14× ( 6÷2)2 = 28.26(平方厘 M)侧面积: 3.14× 6 ×12 = 226.08(平方厘 M)表面积: 28.26× 2 + 226.08 = 282.6(平方厘 M )( 3 )底面周长是 25.12 厘 M ,高是 8 厘 M 。底面积: 25.12 ÷ 3.14 ÷ 2 = 4 (

23、厘 M )3.14×4 2 = 50.24(平方厘M )12/23侧面积: 25.12× 8= 200.96 (平方厘M )表面积: 50.24× 2+ 200.96 = 301.44(平方厘 M )6 、用铁皮制作一个圆柱形烟囱,要求底面直径是3 分 M,高是 15 分 M ,制作这个烟囱至少需要铁皮多少平方分 M ?(接头处不计,得数保留整平方分M)侧面积: 3.14× 3×15 = 141.3 (平方分M) 142 (平方分 M )7 、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。解法一:选择和底面积: 3.14 

24、15; ( 3÷2 ) 2 = 7.065(平方分M)侧面积: 9.42 × 2 = 18.84(平方分M )表面积: 7.065 × 2 + 18.84 = 32.97(平方分M)解法二:选择和底面积: 3.14× (4÷2)2 = 12.56(平方分 M)侧面积: 12.56× 5 =62.8(平方分 M )表面积: 12.56× 2+62.8= 87.92(平方分 M )8 、一个圆柱形蓄水池,底面周长是25.12M ,高是4M ,将这个蓄水池四周及底部抹上水泥。如果每平方 M 要用水泥 20 千克,一共要用多少千克水

25、泥?底面积: 25.12 ÷ 3.14 ÷2 = 4 (M)3.14 ×4 2 = 50.24 (平方M )侧面积: 25.12× 4 = 100.48(平方 M)表面积: 50.24+ 100.48= 150.72(平方 M)水泥质量: 150.72 ×20 = 3014.4千克小学数学总复习专题讲解及训练(五)主要内容13/23圆柱和圆锥的体积学习目标1 、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式正确计算圆柱体积或圆柱形容器的容积以及解决简单的实际问题。2 、通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公

26、式,能运用公式正确地计算圆锥的体积以及解决简单的实际问题。3 、通过圆柱、圆锥体积计算公式的推导、运用的过程,培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力,并体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。考点分析1 、圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积)=底面积×高,用含有字母的式子表示是: V = sh或者 V = r2h 。2 、圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。即V = sh或者 V =r2h 。典型例题例 1 、(计算圆柱的体积)一个圆柱,

27、底面周长9.42分 M,高 20 厘 M 。求它的体积?分析与解:求圆柱的体积,一般根据V = sh或者 V = r2h ,题中没有给出底面积,又没有给出底面半径,所以要先求出底面半径,同时题目中单位名称不统一,要注意化单位,可以统一为分M, 也可以统一为厘M 。20厘M=2 分M底面半径: 9.42÷ 3.14 ÷2 = 1.5(分 M)体积: 3.14×1.52 × 2 = 14.13(立方分 M )答:它的体积是14.13 立方分 M。14/23点评:会使用圆柱体积计算公式是一个基本的要求。但知道圆柱体积计算公式的推导过程也非常重要。体积计算公式的

28、推导过程和之前的圆柱的侧面积计算公式推导过程一样,都用了转化的数学思想。例 2 、(计算圆柱的容积)一个圆柱形的粮囤,从里面量得底面周长是9.42M ,高是 2M ,每立方M 稻谷约重545 千克,这个粮囤约装稻谷多少千克?(得数保留整千克数)。分析与解:先通过底面周长求出底面半径,再求出底面积,进而求出容积。再去求能装稻谷多少千克。3.14 ×( 9.42 ÷3.14 ÷2 ) 2 × 2 × 545 = 7700.85(千7701克)答:这个粮囤约装稻谷7701千克。点评:虽然求容积的方法和求体积的方法相同,但并不意味着体积就是容积。体积的

29、数据是从外面量的,而容积的数据要从里面量。所以一个物体的体积都比其容积要大。例 3 、(计算和圆柱的体积相关的实际问题)有一个高为6.28分 M 的圆柱形机件,它的侧面展开正好是一个正方形,求这个机件的体积?分析与解:圆柱侧面展开是个正方形,说明圆柱的底面周长和高相等。先通过底面周长求出底面积,再求体积。3.14×( 6.28÷3.14÷2 ) 2×6.28 =19.7192(立方分M )答:这个机件的体积是19.7192立方分 M 。点评:圆柱侧面展开之后得到一个长方形,长是圆柱的底面周长,宽是圆柱的高。在这儿展开之后是个正方形,就说明这个圆柱的底面周

30、长和高相等。例 4 、(综合题)一种抽水机出水管的直径是1 分 M ,管口的水流速度是每秒2M ,1 分钟能抽水多少立方 M ?分析与解:每秒流出来的水的形状,可以看成是一个底面直径1 分 M,高 2M 的圆柱,这个圆柱的体积就是 1 秒种流出的水的体积,再乘60 得出 1 分钟抽水的体积。1 分 M=0.1M3.14×( 0.1 ÷2 ) 2×2 = 0.0157(立方 M )0.0157×60 =0.942(立方 M )15/23答: 1 分钟能抽水0.942立方 M。例 5 、(综合题)把一根长4M 的圆柱形钢材截成两段,表面积比原来增加31.4平

31、方厘 M 。这根钢材的体积是多少立方厘M ?分析与解:长4M 是圆柱的高,要求圆柱的体积还要知道底面积。把圆柱截成两段,增加了两个底面的面积,即增加31.4平方厘 M,可以求出圆柱的底面积。4M=400 厘 M31.4÷2 = 15.7(平方厘 M )15.7×400 = 6280(立方厘 M )答:这根钢材的体积是6280立方厘 M。例 6、(计算圆锥的体积)一个圆锥的底面半径是6 厘 M,高是 4 厘 M,求它的体积。分析与解:已知圆锥的底面半径、直径、周长时,都要先求出底面积,然后根据V = sh 来计算圆锥的体积。在计算时,千万不要忘记“除以 3”或 “乘 ”。&#

32、215;3.146×2×4 = 150.72(立方厘 M)答:圆锥的体积是150.72 立方厘 M 。点评:求圆锥的体积不能忘了最后要除以3 。如果不除以 3,求的就是和这个圆锥等底等高的圆柱的体积,而不是圆锥的体积。计算时,可以先算×6 2 ×4 ,最后再乘 3.14 ,可以使计算简便,提高正确率。例 7、(解决和圆锥体积计算相关的实际问题)一个圆锥形沙堆高1.5M ,底面周长是18.84M,每立方 M 沙约重 1.7吨,这堆沙约重多少吨?分析与解:要求沙堆的质量,先要求沙堆的体积。沙堆是圆锥形,已知它的高和底面周长,根据圆锥体积的计算公式,先求圆锥的

33、底面积。底面半径: 18.84 ÷ 3.14 ÷ 2 = 3 ( M )体积: ×3.14×3 2 × 1.5 = 14.13(立方 M)沙堆的质量: 14.13× 1.7 = 24.021(吨)16/23答:这堆沙约重24.021吨。例 8 、判断:( 1 )圆锥的体积是圆柱体积的。()( 2 )如果一个圆锥的体积是一个圆柱体积的,那么它们等底等高。()分析与解:(1 )一个圆锥的体积是和它等底等高的圆柱体积的,这一结论是将它的体积和它等底等高的圆柱进行比较得到的。( 2 )等底等高的圆锥的体积是圆柱体积的;但圆锥的体积是圆柱体积的

34、,并不意味着它们等底等高。例 9 、(综合题)一个圆锥的底面半径是3 厘 M,体积是 75.36立方厘 M ,高是多少厘 M ?分析与解:要求圆锥的高,根据圆锥体积计算的公式,可以先用体积乘3 ,求出和它等底等高的圆柱的体积,再除以底面积,即高 =体积 ×3÷ 底面积,注意不能用圆锥的体积直接除以底面积。也可以根据圆锥体积计算的公式列方程解答。方法 1:底面积: 3.14 × 3 2 = 28.26(平方厘 M)高: 75.36× 3÷ 28.26 = 8(厘 M)方法 2 :设高是厘 M 。×3.143×2× =

35、 75.369.42 = 75.36先算左边的×3.14 ×3 2 = 8答:高是8 厘 M。点评:通过体积去求圆锥的高时要注意先用体积乘3 ,求出与这个圆锥等底等高的圆柱的体积,再除以底面积,求出高;也可以根据圆锥体积计算公式用方程解答。例 10 、(综合题)把一个棱长为12 厘 M 的正方体木块加工成一个最大的圆锥,圆锥的体积是多少立方厘 M ?削去的部分是多少立方厘M?分析与解:将正方体木块加工成一个最大的圆锥,圆锥的底面直径和高都等于正方体的棱长。17/23正方体的体积:12 × 12 ×12 = 1728(立方厘M )圆锥的体积:×3

36、.14 ×( 12÷ 2 ) 2 ×12 = 452.16(立方厘M )削去部分的体积:1728452.16 = 1275.84(立方厘M )答:圆锥的体积是452.16立方厘 M ,削去的部分是1275.84立方厘 M 。小学数学总复习专题讲解及训练(五)模拟试卷一、圆柱体积1 、求下面各圆柱的体积。( 1)底面积 0.6平方 M ,高 0.5M( 2)底面半径是3厘M,高是 5厘M。( 3)底面直径是8M ,高是 10M 。( 4)底面周长是25.12 分 M,高是 2 分 M。2 、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7 。第一个圆柱的体

37、积是 24 立方厘M ,第二个圆柱的的体积比第一个圆柱多多少立方厘M?3 、在直径0.8M的水管中,水流速度是每秒2M ,那么 1 分钟流过的水有多少立方M?4 、牙膏出口处直径为5 毫 M,小红每次刷牙都挤出1 厘 M 长的牙膏。这支牙膏可用36 次。该品牌牙膏推出的新包装只是将出口处直径改为6 毫 M,小红还是按习惯每次挤出1 厘 M 长的牙膏。这样,这一支牙膏只能用多少次?5 、一根圆柱形钢材,截下1.5M ,量得它的横截面的直径是4 厘 M。如果每立方厘M 钢重 7.8 克,截下的这段钢材重多少千克?(得数保留整千克数。)18/236 、把一个棱长6 分 M 的正方体木块,削成一个最大

38、的一圆柱体,这个圆柱的体积是多少立方分M ?7 、右图是一个圆柱体,如果把它的高截短3 厘 M,它的表面积减少94.2平方厘 M 。这个圆柱体积减少多少立方厘M ?二、圆锥体积1 、选择题。(1)一个圆锥体的体积是a 立方 M,和它等底等高的圆柱体体积是() a 立方 M 3a 立方 M9立方M(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6 立方 M,圆锥体体积是 ()立方 M6立方M3立方M2立方M2 、判断对错。( 1 )圆柱的体积相当于圆锥体积的3 倍()( 2 )一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1()( 3 )一个圆柱和圆锥等底等高,

39、体积相差21 立方厘 M ,圆锥的体积是7 立方厘 M()3 、填空( 1 )一个圆柱体积是18 立方厘 M ,与它等底等高的圆锥的体积是()立方厘M 。( 2 )一个圆锥的体积是18 立方厘 M ,与它等底等高的圆柱的体积是()立方厘M 。( 3 )一个圆柱与和它等底等高的圆锥的体积和是144 立方厘 M 。圆柱的体积是()立方厘M,圆锥的体积是()立方厘M 。19/234 、求下列圆锥体的体积。( 1)底面半径 4 厘 M,高 6 厘 M。( 2)底面直径 6 分 M,高 8 厘 M。( 3 )底面周长 31.4 厘 M ,高 12 厘 M。5 、一个圆锥形沙堆,高是1.5M ,底面半径是

40、2M ,每立方M 沙重 1.8 吨。这堆沙约重多少吨?6 、一个近似圆锥形的麦堆,底面周长12.56M,高 1.2M ,如果每立方M 小麦重 750 千克,这堆小麦重多少千克?7 、一个长方体容器,长5 厘 M,宽 4 厘 M,高 3 厘 M,装满水后将水全部倒入一个高6 厘 M 的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘M ?参考答案:一、圆柱体积1 、求下面各圆柱的体积。( 1)底面积 0.6平方 M ,高 0.5M 0.6×0.5 = 0.3(立方 M)( 2)底面半径是3 厘M,高是 5 厘M。 3.14 ×32×5 = 141.3 (立

41、方厘 M )( 3)底面直径是8M ,高是 10M 。 3.14×( 8÷2 ) 2×10 = 502.4(立方 M)( 4)底面周长是25.12分M,高是 2分M。3.14 ×( 25.12÷3.14÷2 ) 2 ×2 = 100.48(立方分 M)20/232 、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7 。第一个圆柱的体积是24 立方厘M ,第二个圆柱的的体积比第一个圆柱多多少立方厘M?底面积相等的两个圆柱,第一个圆柱的高是第二个圆柱的4/7 ,第一个圆柱的体积也就是是第二个圆柱的4/7 。24 

42、47;4/7 24 = 18 (立方厘 M )答:第二个圆柱的的体积比第一个圆柱多18 立方厘 M。3 、在直径 0.8M的水管中,水流速度是每秒2M ,那么 1 分钟流过的水有多少立方M?3.14×( 0.8 ÷2)2 ×2×60 = 60.288(立方 M)答:那么 1 分钟流过的水有 60.288 立方 M。4 、牙膏出口处直径为 5毫 M,小红每次刷牙都挤出1 厘 M 长的牙膏。这支牙膏可用36 次。该品牌牙膏推出的新包装只是将出口处直径改为6 毫 M,小红还是按习惯每次挤出1 厘 M 长的牙膏。这样,这一支牙膏只能用多少次?牙膏体积: 1 厘 M=10毫 M3.14×( 5÷2 )2 ×10×36 = 7065(立方毫 M)7065÷3.14(×6 ÷2 )2 ×10 = 25(次)答:这样,这一支牙膏只能用25 次。5 、一根圆柱形钢材,截下1.5M ,量得它的横截面的直径是4 厘 M。如果每立方厘M 钢重 7.8 克,截下的这段钢材重多少千克?(得数保留整千克数。)1.5M = 150厘 M3.14×( 4 ÷2 ) 2×150×7.8 = 14695.2(克) = 14.6952(千克) 15

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论