


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019-2020学年安徽省滁州市乔田中学高二数学文模拟试卷含解析一、 选择题:本大题共10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 如果 a1,a2, , a8为各项都大于零的等差数列,公差,则( )a b c d 参考答案:b 2. 设实数满足,则的最小值是()a2 b3 c d参考答案:b 3. 某工厂生产a、b、c三种不同型号的产品,其数量之比依次是3:4:7,现在用分层抽样的方法抽出样本容量为n 的样本,样本中a 型号产品有15 件,那么 n 等于()a50 b60 c70 d80参考答案:c【考点】分层抽样方法【分析】根据分层抽样
2、的定义和方法,可得=,由此求得n 的值【解答】解:根据分层抽样的定义和方法,可得=,解得 n=70,故选: c 4. 椭圆上有一点 p到左准线的距离是 5,则点 p到右焦点的距离是() a.4 b.5 c.6 d.7参考答案:c5. 已知 alog23.6 ,blog43.2 ,clog43.6 ,则( )aabcbacb cbac dcab参考答案:b 6. 已知复数 z 满足为虚数单位,则复数为a. b. c. d. 参考答案:a试题分析:由题意可得考点:复数运算7. 已知点 a(1,2),b(2,3),直线 l :kxyk+1=0 与线段 ab相交,则实数k 的取值范围是()ak2 bk
3、或 k2c2kd k 2 或 k参考答案:b【考点】简单线性规划;二元一次不等式(组)与平面区域【分析】根据题意,分析可得可以将原问题转化为a、b两点在直线l 的异侧或在直线上,进而可得 k (1)2k+1k 2 3k+1 0,解可得k 的范围,即可得答案【解答】解:根据题意,点a(1,2), b(2,3),直线 l :kxyk+1=0 与线段 ab相交,则 a、b两点在直线l 的异侧或在直线上,则有 k (1)2k+1k 2 3k+1 0,解可得: k或 k2,故选: b8. 已知 xa0,则下列不等式一定成立的是()a0 x2a2 bx2axa2 c0 x2ax d x2a2ax参考答案:
4、b【考点】 72:不等式比较大小【分析】利用不等式的基本性质即可得出【解答】解: x a0,x2xaa2故选: b9. 下列命题中,正确的是()a若 ab,cd,则 ac b若 acbc,则 abc若,则 ab d若 ab,cd,则 acbd参考答案:c【考点】不等式比较大小【分析】对于a,b,d举例即可判断,对于c根据不等式的性质即可判断【解答】解:对于a:若 a=2,b=3,c=1,d=2,则不成立,对于 b:若 c0,则不成立,对于 c:根据不等式的性质两边同乘以c2,则 ab,故成立,对于 d:若 a=1,b=1,c=1,d=2,则不成立,故选: c10. 已知 abc的面积为,ac
5、2, bac 60,则 acb ()a30 b 60 c90 d150参考答案:a二、 填空题 :本大题共 7 小题,每小题 4分,共 28分11. 过点且平行于极轴的直线的极坐标方程为参考答案:12. 中,将三角形绕直角边旋转一周所成的几何体的体积为 _。参考答案:解析: 旋转一周所成的几何体是以为半径,以为高的圆锥,13. 已 知 直 线与垂 直 , 则的 值是 .参考答案:1 或 4略14. 已知圆 o :x2+y2=1,点 m (x0,y0)是直线 xy+2=0 上一点,若圆o上存在一点n ,使得,则 x0的取值范围是参考答案:2,0【分析】过m作o 切线交c 于 r,则omr omn
6、 ,由题意可得 omr ,|om|2再根据m (x0,2+x0),|om|2=x02+y02=2x02 +4x0+4,求得 x0的取值范围【解答】解:过m作o 切线交c 于 r,根据圆的切线性质,有omr omn 反过来,如果 omr ,则o 上存在一点n使得omn=若圆 o上存在点 n,使omn=,则omr |or|=1,or mr ,|om|2又m (x0,2+x0),|om|2=x02+y02=x02+(2+x0)2=2x02 +4x0+4,2x02+4x0+44,解得, 2x00 x0的取值范围是 2,0 ,故答案为: 2,0 【点评】本题主要考查了直线与圆相切时切线的性质,以及一元二
7、次不等式的解法,综合考察了学生的转化能力,计算能力,属于中档题15. 在极坐标系中,点到直线的距离等于 _参考答案:点(,)的直角坐标为(1,1),直线 cossin 1=0 的直角坐标方程为xy 1=0,点到直线的距离为=,故答案为:16. 已知是椭圆上的一点,是椭圆的两个焦点,当时,则的面积为. 参考答案:17. 复平面内,若z=m2(1+i ) m (4+i ) 6i 所对应的点在第二象限,则实数m的取值范围是参考答案:(3,4)【考点】 a4:复数的代数表示法及其几何意义【分析】根据复数的几何意义,求出对应点的坐标,即可得到结论【解答】解:复数z=m2(1+i )m (4+i )6i=
8、m24m+ (m2m 6)i 对应的点的坐标为(m24m ,m2m 6),所对应的点在第二象限,m24m 0 且 m2m 60,即,解得 3m 4,故答案为:( 3,4)【点评】本题主要考查复数的几何意义,以及不等式的解法,比较基础三、 解答题:本大题共5 小题,共 72分。解答应写出文字说明,证明过程或演算步骤18. (12 分)已知集合,求:(1);(2)参考答案:解:3 分6 分(1) 8 分(2)10 分12 分19. 如图,四边形abcd 为正方形, e、f 分别为 ad、bc 的中点,以df 为折痕把折起,使点c 到达点 p 的位置,且. ()证明 :面 ped 面 bfp;()求
9、二面角 d-pf-b的大小 . 参考答案:6 分.9分20. (本题满分14 分)如图表 4,在棱长为 1 的正方体中,点 e是棱上的动点, f,g分别是的中点 .(1)求证:.(2)当点 e是棱上的中点时,求异面直线ef与 cg所成角的余弦值 .(3)当二面角达到最大时,求其余弦值. 参考答案:(1)方法一:f 为 bd的中点,1分又面 abcd ,2分,面3分面,4分;方法二:以d 为坐标原点,所在直线分别为轴,建立空间直角坐标系.则, 设. 1分则,2分3分故4分(2)方法一:连接. 当点 e是棱上的中点时,因为为的中点,由正方体的性质知 ks5u故或其补角为异面直线ef与 cg所成角.
10、 5分在中,6分在中,7分在中,8分故,在中,异面直线 ef与 cg所成角的余弦值为9 分;方法二:6分设异面直线ef与 cg所成角为,则8分异面直线 ef与 cg所成角的余弦值为9分(3)方法一:面, 10 分故为二面角的平面角,11分当与重合时,二面角达到最大 . 12分此时,13分所以,即当二面角达到最大时其余弦值为14分方法二:设,面的一个法向量为由得取,则,故11 分面 dcf的一个法向量为12分设二面角的大小为,则由图可知故,当达到最小即时,二面角达到最大,此时14分21. 已知圆 c同时满足下列三个条件:与y 轴相切;在直线y=x 上截得弦长为2;圆心在直线x3y=0 上求圆 c的方程参考答案:【考点】圆的标准方程【分析】设所求的圆c与 y 轴相切,又与直线y=x 交于 ab ,由题设知圆心c(3a,a),r=3|a| ,再由点到直线的距离公式和勾股定理能够求出a 的值,从而得到圆c的方程【解答】解设所求的圆c与 y 轴相切,又与直线y=x 交于 ab ,圆心 c在直线 x3y=0 上,圆心c (3a,a),又圆与 y 轴相切, r=3|a| 又圆心c到直线 yx=0 的距离在 rtcbd中,9a22a2=7a2=1,a=1,3a=3圆心的坐标c分别为( 3,1)和( 3, 1),故所求圆的方程为(x3)2+(y1)2=9 或( x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险培训讲师考试题库及答案
- 有用的企业面试题库及参考答案详解【夺分金卷】
- 足疗按摩师职业资格考试试题及答案
- 2025年直播电商主播与品牌合作模式创新与市场趋势报告
- 2025年老年健康管理长期照护服务模式与养老产业政策创新实践报告
- 2025年工业互联网平台生物识别技术在工业数据分析与挖掘中的应用报告
- 2025至2030年中国羊毛衫行业市场发展现状及投资方向研究报告
- 考点解析-华东师大版8年级下册期末试题含答案详解(基础题)
- 押题宝典执业药师资格证之《西药学专业二》试题含答案详解【轻巧夺冠】
- 2025版企业股权让与担保合同模板
- 深圳2025年重大项目计划申报
- 学生不住校申请书
- 2025年传动部件行业当前市场规模及未来五到十年发展趋势报告
- HBV感染中宿主细胞免疫应答与临床转归的关联探究
- 2025年福建省宁德市北京师范大学宁德实验学校公开招聘新任教师8人笔试备考题库及答案解析
- 2025年专业技术人员公需科目培训网上考试试题及参考答案
- 锚杆工程验收标准及记录表范本
- 特种设备作业人员Q1起重机指挥模拟考试题及答案2025
- 小学科学新教科版二年级上册第一单元 造房子教案(共6课)(2025秋)
- 2025至2030中国广播电视行业市场占有率及有效策略与实施路径评估报告
- 2025年秋期部编版五年级上册小学语文教学计划+教学进度表
评论
0/150
提交评论