




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、必修二立体几何复习讲义一、基础知识梳理:1、柱、锥、台、球的结构特征2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和
2、。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V= ; S=5、空间点、直线、平面的位置关系(1)平面 平面的概念: A.描述性说明; B.平面是无限伸展的; 平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。 点与平面的关系:点A在平面内,记作;点不在平面内,记作点与直线的关系:点A的直线l上,记作:Al; 点A在直线l外,记作Al;直线与平面的关系:直线l在平面内,记作l;直线l不在平面内,记作l。(2)公理1:如果一条直线的两点在一个平面内
3、,那么这条直线是所有的点都在这个平面内。(两点确定一条直线)应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理1:(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。(三点确定一条直线)推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理2及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面和相交,交线是a,记作a。符号语言:公理3的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断
4、点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线aa,bb,则把直线a和b所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:求异面直线所成角步骤:A、利用定义构造角,可
5、固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系直线在平面内有无数个公共点三种位置关系的符号表示:a aA a(9)平面与平面之间的位置关系:平行没有公共点;相交有一条公共直线。b6、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面
6、相交,那么这条直线和交线平行。线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行)(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行面面平行)(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所
7、成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个
8、平面内垂直于他们的交线的直线垂直于另一个平面。8、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为。两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角平面的平行线与平面所成的角:规定为。 平面的垂线与平面所成的角:规定为。斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三
9、计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平
10、面垂直,那么所成的二面角为直二面角2、 强化练习:1如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ).A. 1B. C. D. 2如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是( )A. B. C. D. 2俯视图主视图左视图212_B_1_A_1_B_A_B_1_A_1_B_A正视图俯视图左视图主视图俯视图 第1题第2题 ( 第3题)A. B. C. D. 3如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱,正视图是边长为2的正方形,该三棱柱的左视图面积为( ) A. B. C. D
11、. 4.若一个几何体的三视图如右图所示,则此几何体的体积为( )A B.5 C.4 D. 5.【2012高考全国文8】已知正四棱柱中 ,为的中点,则直线与平面的距离为( )(A) (B) (C) (D)6.设三棱柱ABCA1B1C1体积为V,P、Q分别是侧棱AA1、CC1上的点,且PA=QC1,则四棱锥BAPQC体积为( )A B C D7. 如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EFAB,EF,EF与面AC的距离为2,则该多面体的体积为( )A B5 C6 D8.(广东文)如图1 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为图3A BC D俯视图2侧视图正视图9.一个高为2的圆柱,底面周长为,该圆柱的表面积为 10.如图,在长方体中,则四棱锥的体积为 cm311.如图,正方体的棱长为1,E为线段上的一点,则三棱锥的体积为.12.一个几何体的三视图如图所示(单位:m),则该几何体的体积 .第12题第10题第11题第10题13.【2012高考新课标文19】(本小题满分12分)CBADC1A1如图,三棱柱ABCA1B1C1中,侧棱垂直底面,ACB=90°,AC=BC=AA1,D是棱AA1的中点()证明:平面BDC1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新教育设计启迪未来思维
- 智能教室中的教育机器人-未来教育的探索
- 医疗技术政策解读如何影响医疗行业发展
- 中职就业途径课件
- 2025年四川省峨眉二中高二物理第二学期期末质量检测模拟试题含解析
- 2025届黑龙江省部分重点高中物理高二第二学期期末监测试题含解析
- 创意婚礼的策划方案
- 二零二五年度咖啡吧台承包与市场拓展协议
- 2025年安置房项目招投标及施工监理协议合同
- 二零二五年度安徽劳动合同模板及企业劳动合同管理
- 脑卒中溶栓护理课件
- 2025年城建技师考试题库及答案
- 2025年中国LTCC技术行业市场现状、前景分析研究报告(智研咨询发布)
- 租赁住房培训课件下载
- 房管员试题资料
- 2025至2030中国扭蛋机行业市场发展现状及商业模式与投融资战略报告
- 2024年苏州昆山国创投资集团有限公司招聘笔试真题
- 商场吸烟区管理制度
- 2025年四川省成都市中考地理真题(原卷版)
- 糖尿病足截肢术后护理
- 广东省东莞市2022-2023学年高二下学期期末物理试题(含答案)
评论
0/150
提交评论