新人教版八年级数学下册二次根式的知识点汇总(二)_第1页
新人教版八年级数学下册二次根式的知识点汇总(二)_第2页
新人教版八年级数学下册二次根式的知识点汇总(二)_第3页
新人教版八年级数学下册二次根式的知识点汇总(二)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二次根式的知识点汇总知识点一:二次根式的概念形如瓜(«> 0)的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以厘之0是4为二次根式的前提条件,如J5, J/+1 ,等是二次根式,而 "-7等都不是二次根式。例1.下列式子,哪些是二次根式,哪些不是二次根式:J2、33、)、JX(x>。)、J0、4份、-J2、xx yJx y (x>0, y?>0).分析:二次根式应满足两个条件:第一,有二次根号“L";第二,被开方数是正数或 0.知识点二:取值范围1、 二次根式

2、有意义的条件:由二次根式的意义可知,当 a叁0时,声 有意义,是二次根式,所以要使二次根式 有意义,只要使被开方数大于或等于零即可。2、 二次根式无意义的条件:因负数没有算术平方根,所以当a<0时,没有意义。例2.当x是多少时,J3x 1在实数范围内有意义?1例3.当x是多少时,J2x 3 + -在实数范围内有意义?x 1知识点三:二次根式 瓜(厘兰°)的非负性品 (口30 )表示a的算术平方根,也就是说,”嬴(意3° )是一个非负数,即土 0("3°)。注:因为二次根式 而(信之0)表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0

3、,所以非负数(以三。)的算术平方根是非负数,即 之0 (口3°),这个性质也就是非负数的算术平方根的性质,和绝对值、 偶次方类似。这个性质在解答题目时应用较多,如若 石+遥=0 ,则a=0,b=0;若石+囿=。,则a=0,b=0;若 A+/=。,则 a=0,b=0。例 4(1)已知 y=j2 x+Jx 2+5,求学 的值.(2)若 Ja 1+Jb 1=0,求 a2004+b2004 的值 y知识点四:二次根式()的性质(向口(2)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式二次(胃之口 )是逆用平方根的定义得出的结论。 上面的公式也可以反过来应用

4、: 中之0 ,则"二(4如:例1计算1 . ( 2)22. (3>/5) 23.(6)24. (2)例2在实数范围内分解下列因式:(1) x2-3(2) x4-4(3) 2x2-3知识点五:二次根式的性质a(aO)4文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简 必时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或 0,则等于a本身,二的圳;若a是负数,则等于a的相反数-a,即屈二同叱。);2、必 中的a的取值范围可以是任意实数,即不论a取何值,必一定有意义;3、化简"时,先将它化成,再根据绝对值的意义来进行化简。例1化简(1)而 G

5、)2(3)/(4) ”)2例2填空:当a> 0时,702=;当a<0时,702=, ?并根据这一性质回答下列问题.(1)若Va2 =a,则a可以是什么数? ( 2)若J/ =-a,则a是什么数? (3) Va2>a,则a是什么数?例 3 当 x>2,化简 J(x 2)2 - J(1 2x)2 .知识点六: (向"E 的异同点1、不同点:(出与" 表示的意义是不同的,(6了表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在 (W厂中鼻口0,而中a可以是正实数,0,负实数。但(W尸与"都是非负数, jnj _卜卜:厘艮 口

6、 (N ) 一,- 0 。因而它的运算的结果是有差别的,(的&伯之0),而“ 1一-仪/0)2、相同点:当被开方数都是非负数,即 痉之0时, = =/时,无意义,而E二-嶷,知识点七:二次根式的乘除1、乘法 4a 而=Yab (a>0,b 0)Vab = Va - Vb (a>0, bn。)a J2、除法而=b (a> 0, b>0)反过来:a反过来,a> 0, b>0)b(思考:b的取值与 例1.计算a相同吗?为什么?不相同,因为b在分母,所以不能为 0)(3)79x727(4)例2化简(1) J9 16(2) J6 81(3) ,9x2 y2(4

7、) 54例3.判断下列各式是否正确,不正确的请予以改正:(1)式 4) ( 9) C.飞(2)4 x,25 =4 x1225X . 25 =412 x25,25=4.12=8、.3例4.计算:(1)12/331(2)281(3)4. 64(4)8例5.化简:(1)634(2)64b29a2(3)9x64y2(4)5x169y2例6.已知x9 x9 x求 1 1+x)二9,且x为偶数,6. x 63、最简二次根式应满足的条件:(1)被开方数 不含分母或分母中不含二次根式;(2)被开方数中 不含开得尽方的因数或因式(熟记20以内数的平方;因数或因式间是乘积的关系,当被开方数是整式时要先判断是否能够

8、分解因式,然后再观 察各个因式的指数是否是 2 (或2的倍数),若是则说明含有能开方的因式,则不满足条件,就不是最简二次根式)例1 .把下列二次根式化为最简二次根式 31152; (2) Jx2y4x4y2 ; (3) J8x2y34、化简最简二次根式的方法:(1)把被开方数(或根号下的代数式)化成积的形式,即分解因式;(2)化去根号内的分母(或分母中的根号),即分母有理化;(3)将根号内能开得尽方的因数 (或因式)开出来.(此步需要特别注意的是:开到根号外的时候要带绝对值,注意符 号问题)5.有理化因式:一般常见的互为有理化因式有如下几类:海石十磬曲与落石一右曲.说明:利用有理化因式的特点可

9、以将分母有理化.13、同类二次根式:被开方数相同的(最简)二次根式叫同类二次根式。判断是否是同类二次根式时 爰必将各个根式都化为最简二次根式。如 灰与屈 知识点八:二次根式的加减1、二次根式的加减法:先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行 合并。(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。例 1.计算(1)而+石8(2) xA6x+ x/64x分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)而+加=2亚+3五=(2+3) V2 =55/2(2) J16x + &4x =4 G +8 4 = (4+8) 人=12 4例2 .计算(1) 3 而-94+3亚(2)(疝+ 与)+ (A2-V5)例 3.已知 4x2+y2-4x-6y+10=0 ,求(x/9x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论