



付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、可化为一元一次方程的分式方程第1课时教学目标:1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、使学生领会“ 转化的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.4、培养学生自主探究的意识,提高学生观察能力和分析能力.教学重点:理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.教学难点:使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.教学过程:(一)问题情境导入问题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的
2、时间相同.水流的速度是3千米/时,求轮船在静水中的速度.读题、审题、设元、列方程.(二)实践与探索1:分式方程的概念:分析:设轮船在静水中的速度为x千米/时,根据题意,得方程(1)有何特点?概括 方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.提问:你还能举出一个分式方程的例子吗?辨析:判断以下各式哪个是分式方程.(1);(2);(3);(4);(5)根据定义可得:(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.学生观察分析后,发表意见,达成共识.根据分式方程的概念进行判定,加深对分式方程概念的理解.(三)实践与探索2:分式方程的解法1、思考:怎样解分式方
3、程呢?为了解决本问题,请同学们先思考并答复以下问题:1)回忆一下解一元一次方程时是怎么去分母的,从中能否得到一点启发?2)有没有方法可以去掉分式方程的分母把它转化为整式方程呢?方程(1)可以解答如下:方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)=60(x+3).解这个整式方程,得x=21.所以轮船在静水中的速度为21千米/时2、概括上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.3、例1解方程:.解:方程两边同乘以(x2-1),约去分母,得x+1=2.解这个整式方程,得x=1.事
4、实上,当x=1时,原分式方程左边和右边的分母(x1)与(x21)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的根,应当舍去.所以原分式方程无解.4、在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.5.那么,可能产生“增根的原因在哪里呢?6、验根的方法解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.如例1中的x=1,代入
5、x210,可知x=1是原分式方程的增根.7、有了上面的经验,我们再来完整地解分式方程.可先放手让学生自主探索,合作学习并进行总结.学生尝试解题,并思考产生增根的原因.总结解分式方程的步骤,并真正理解增根.练一练(1)(2)板演并小组批改.(四)小结与作业1、什么是分式方程?举例说明;2、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程.验根,即把整式方程的根代入最简公分母,看结果是不是零,假设结果不是0,说明此根是原方程的根;假设结果是0,说明此根是原方程的增根,必须舍去.3、解分式方程为什么要进行验根?怎样进行验根?各抒已见畅所欲言说分式方程及其解法
6、,特别要注意验根.(五)板书设计分式方程乘最简公分母整式方程第2课时利用移项解一元一次方程教学目标1掌握移项变号的根本原那么;2会利用移项解一元一次方程。教学重难点【教学重点】移项变号的根本原那么。【教学难点】 利用移项解一元一次方程。课前准备课件、教具等。教学过程一、情境导入上节课学习了一元一次方程,它们都有这样的特点:一边是含有未知数的项,一边是常数项这样的方程我们可以用合并同类项的方法解答那么像3x7322x这样的方程怎么解呢?二、合作探究探究点一:移项例1 通过移项将以下方程变形,正确的选项是()A由5x72,得5x27B由6x3x4,得36x4xC由8xx5,得xx58D由x93x1
7、,得3xx19解析:A.由5x72,得5x27,应选项错误;B.由6x3x4,得6xx34,应选项错误;C.由8xx5,得xx58,应选项正确;D.由x93x1,得3xx91,应选项错误应选C.方法总结:(1)所移动的是方程中的项,并且是从方程的一边移到另一边,而不是在这个方程的一边变换两项的位置;(2)移项时要变号,不变号不能移项探究点二:用移项解一元一次方程例2 解以下方程:(1)x43x;(2)5x19;(3)4xxx.解析:通过移项、合并、系数化为1的方法解答即可解:(1)移项得x3x4,合并同类项得4x4,系数化成1得x1;(2)移项得5x91,合并同类项得5x10,系数化成1得x2;(3)移项得4x48,合并同类项得4x12,系数化成1得x3;xx,x,系数化成1得x4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号三、板书设计1移项的定义:把等式一边的某项变号后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年滨州无棣县医疗卫生机构公开招聘工作人员(25人)考试参考试题及答案解析
- 2026华丞电子校园招聘考试参考试题及答案解析
- 2025年神经外科脊柱手术护理技能考察答案及解析
- 2025年急诊医学院前现场施救技巧实操答案及解析
- 花果茶茶叶买卖合同3篇
- 2025年口腔科常见口腔疾病护理操作模拟考试卷答案及解析
- 2025年中医药学常见疾病的辨证施治模拟测试答案及解析
- 2025年危重病房监护治疗专业知识综合考核模拟试卷答案及解析
- 2025年眼科手术操作规范性考察试卷答案及解析
- 2025年烧伤外科手术器械操作考核实操答案及解析
- JJF 1033-2023 计量标准考核规范
- 九年级历史上册教材课后习题参考答案
- 血液透析的标准预防课件
- 全科规培:门诊SOAP病历考核模拟文档
- 《能源概论》课件
- 2023年湖南长沙湘江新区所属事业单位招聘12人笔试参考题库(共500题)答案详解版
- 插花艺术与花艺课件
- CADCAM应用技术(CAXA2020)中职全套教学课件
- 生物医学工程伦理 课件全套 第1-10章 生物医学工程与伦理-医学技术选择与应用的伦理问题
- 仓库管理作业流程规范
- 地面水仓清淤安全技术措施
评论
0/150
提交评论