




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题16直线与圆 命题规律内 容典 型以点到直线的距离公式为工具考查最值问题2019年高考江苏考卷给出一定条件求圆的方程2020年高考全国卷理数5与圆的弦长相关问题2020年高考天津卷1以圆的切线为背景研究直线与圆的位置关系2020年高考浙江卷15以圆为背景的最值与范围问题2020年高考全国卷理数11命题规律一 以点到直线的距离公式为工具考查最值问题【解决之道】解决此类问题的关键,利用点到直线的距离公式转化为函数的最值问题,利用导数或基本不等式求最值.【三年高考】1.【2019年高考江苏卷】在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是 .【答案】4【解析】当
2、直线x+y=0平移到与曲线相切位置时,切点Q即为点P,此时到直线x+y=0的距离最小.由,得,即切点,则切点Q到直线x+y=0的距离为命题规律二给出一定条件求圆的方程【解决之道】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理如:圆心在过切点且与切线垂直的直线上;圆心在任意弦的中垂线上;两圆相切时,切点与两圆心三点共线(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量一般地,与圆心和半径有关,选择标准式,否则,选择一般式不论是哪种形式,都要确定三个独立参数【三年高考】1.【2020年高考全国卷理数5】若过点的圆与两坐标轴都相
3、切,则圆心到直线的距离为( )A B C D【答案】B【解析】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为由题意可得,可得,解得或,圆心的坐标为或,圆心到直线的距离均为,圆心到直线的距离为故选B2.【2020年高考北京卷5】已知半径为的圆经过点,则其圆心到原点的距离的最小值为( )A B C D 【答案】A【解析】由题意知圆心在以为圆心,为半径的圆上,所以圆心到原点的距离的最小值为,故选A命题规律三与圆的弦长相关的问题【解决之道】过定点圆的弦长的最值问题,注意数形结合,一般弦长的计算问题,用垂
4、径定理计算,即弦长为(为圆的半径,为圆心到直线的距离).【三年高考】1.【2020年高考天津卷12】已知直线和圆相交于两点若,则的值为_【答案】5【解析】因为圆心到直线的距离,由可得,解得命题规律四以圆的切线为背景研究直线与圆的位置关系【解决之道】解决此类问题,常利用圆心到切线的距离等与半径来处理.【三年高考】1.【2020年高考浙江卷15】设直线,圆,若直线与,都相切,则 ; 【答案】;【解析】由题意可知直线是圆和圆的公切线,为如图所示的切线,由对称性可知直线必过点,即 ,并且, ,由解得:,故答案为:;2.【2019年高考浙江卷】已知圆的圆心坐标是,半径长是.若直线与圆C相切于点,则=_,
5、=_【答案】,【解析】由题意可知,把代入直线AC的方程得,此时.命题规律五 以圆为背景的最值与范围问题【解决之道】解决此类问题的方法:(1)利用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决(2)直线与圆和平面几何联系十分紧密,可充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放到一起综合考虑【三年高考】1.【2020年高考全国卷理数11】已知,直线,为上的动点,过点作的切线,切点为,当最小时,直线的方程为( )ABCD【答案】D【解析】圆的方程可化为,点到直线的距离为,直线
6、与圆相离依圆的知识可知,四点四点共圆,且,而,当直线时,此时最小即,由解得,以为直径的圆的方程为,即,两圆的方程相减可得:,即为直线的方程,故选D2.【2020年高考江苏卷14】在平面直角坐标系中,已知,是圆:上的两个动点,满足,则面积的最大值是_【答案】【解析】如图,作所在直径,交于点,则:,为垂径要使面积最大,则位于两侧,并设,计算可知,故,故,令,记函数,则,令,解得(舍去)显然,当时,单调递减;当时,单调递增;结合在递减,故时最大,此时,故,即面积的最大值是(注:实际上可设,利用直角可更快速计算得出该面积表达式)3.【2018年高考江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,以AB为直径的圆C与直线l交于另一点D若,则点A的横坐标为_【答案】3【解析】设,则由圆心为中点得易得,与联立解得点的横坐标所以.所以,由得或,因为,所以4.【2018年高考北京卷理数】在平面直角坐标系中,记d为点P(cos ,sin )到直线的距离,当,m变化时,d的最大值为( )A1 B2C3 D4【答案】C【解析】P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,故选C.5.【2018年高考全国卷理数】直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论