《高中数学同步辅导课程》PPT课件_第1页
《高中数学同步辅导课程》PPT课件_第2页
《高中数学同步辅导课程》PPT课件_第3页
《高中数学同步辅导课程》PPT课件_第4页
《高中数学同步辅导课程》PPT课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学同步辅导课程高中数学同步辅导课程人教版高一数学上学期人教版高一数学上学期第一章第第一章第1.2节节子集、全集、补集子集、全集、补集(1)主讲:特级教师主讲:特级教师 王新敞王新敞教学目的:教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集的概念.知识回顾知识回顾1 1集合的表示方法集合的表示方法列举法、描述法列举法、描述法 2 2集合的分类集合的分类 有限集、无限集有限集、无限集 由集合元素的多少对集合进行分类,由集由集合元素的多少对集合进行分类,由集合元素的有限、无限选取表示集合的元素,进合元素的有限、无限选取表示集合的元素,进而判断其多少而判断其多少

2、. 问题:集合与集合之间的关系如何建立?问题:集合与集合之间的关系如何建立?引入引入:观察、思考下面问题的特殊性,寻找其一般规律观察、思考下面问题的特殊性,寻找其一般规律.(1)A=1,2,3,B=1,2,3,4,5(2)A=x| x 3, B=x| 3x-6 3(3)A=正方形正方形,B=四边形四边形(4) A=直角三角形直角三角形,B=三角形三角形(5) A=a,b,B= a,b,c,d,e 集合集合A的元素的元素1,2,3同时是集合同时是集合B的元素的元素 集合集合A中所在大于中所在大于3的元素,也是集合的元素,也是集合 B元素元素 集合集合A中所有正方形都是集合中所有正方形都是集合 B

3、元素元素 集合集合A的元素的元素a,b都是集合都是集合B的元素的元素 由上述特殊性可得其一般性,即集合由上述特殊性可得其一般性,即集合A都是集合都是集合B的一部分的一部分.所有直角三角形都是三角形,即所有直角三角形都是三角形,即A是元素都是是元素都是B中元素中元素 一般地,对于两个集合一般地,对于两个集合A与与B,如果集合,如果集合A中中的任何一个元素都是集合的任何一个元素都是集合B的元素,我们就说集的元素,我们就说集合合A包含于集合包含于集合B,或集合,或集合B包含集合包含集合A,记作,记作A B(B A),这时我们也说集合),这时我们也说集合A是集合是集合B的的子子集集. 新课讲授新课讲授

4、子集定义:子集定义: 如:如:A=2,4,B=2,5,7,则,则A B当集合当集合A不包含于集合不包含于集合B,或集合,或集合B不包含集合不包含集合A,则记作则记作A B(B A) 新课讲授新课讲授规定:规定:空集空集 是任何集合子集是任何集合子集. 即即 A(A为任何集合)为任何集合). 规定:规定:任何一个集合是它本身的子集任何一个集合是它本身的子集. 如如A=11,22,33,B=20,21,31,那么有那么有A A,B B. 例如:例如:A=正方形正方形,B=四边形四边形,C=多边形多边形,则从中可以看出什么规律:则从中可以看出什么规律: A B,B C,从上可以看到,包含关系具有从上

5、可以看到,包含关系具有“传递性传递性”. A C新课讲授新课讲授 如果如果A B,并且,并且 A B,则集合,则集合A是集合是集合B的的真子集真子集. 可这样理解:若可这样理解:若A B,且存在,且存在b B,但,但b A,称称A是是B的的真子集真子集. 真子集关系也具有传递性真子集关系也具有传递性规定:规定: 是任何非空集合的真子集是任何非空集合的真子集. A是是B的真子集,记作的真子集,记作A B(B A) 若若A B,B C,则,则A C 真子集的定义:真子集的定义:bBACBA新课讲授新课讲授集合相等的定义:集合相等的定义: 两个集合相等,应满足如下关系:两个集合相等,应满足如下关系:

6、 A=2,3,4,5,B=5,4,3,2,即集合,即集合A的元素都是集合的元素都是集合B的元素,集合的元素,集合B的元素都是集合的元素都是集合A的元素的元素. 一般地,对于两个集合一般地,对于两个集合A与与B,如果集合,如果集合A的任何一个元素都是集合的任何一个元素都是集合B的元素,集合的元素,集合B的任的任何一个元素都是集合何一个元素都是集合A的元素,我们就说集合的元素,我们就说集合A等于集合等于集合B,记作,记作A =B. 用式子表示:用式子表示:如果如果A B,同时,同时A B,那么,那么A=B. 如:如:a,b,c,d与与d,c,b,a相等;相等; 2,3,4与与4,3,2相等;相等;

7、 稍微复杂的式子特别是用描述法给出的要稍微复杂的式子特别是用描述法给出的要认真分辨认真分辨. 如:如:A=x| x =2m+1,m Z B= x| x =2n-1,n Z 有有 A=B新课讲授新课讲授,-3,-1,1,3, 例例1 写出写出a,b的所有子集,并指出其中哪些的所有子集,并指出其中哪些是它的真子集是它的真子集. 解:依定义解:依定义 a,b的所有子集是的所有子集是 、a、b、a,b 其中真子集有其中真子集有 、a、b. 如果一个集合的元素有如果一个集合的元素有n个,那么这个集合的子个,那么这个集合的子集有集有2 n个,真子集有个,真子集有2n-1个个.从这个例题可以得到一般的结论:

8、从这个例题可以得到一般的结论:例题讲解例题讲解 例例2 解不等式解不等式x -32,并把结果用集合表示,并把结果用集合表示 解:由不等式解:由不等式x -32知知x 5 所以原不等式解集是所以原不等式解集是 x | x 5 Aba,3已知例edcba,.A合写出所有满足条件的集ba,有解:满足条件的集合Acba,dbaeba,dcbaecba,.共七个,edba例题讲解例题讲解314aA,、设集合例,且,112aaB.的值,求aA解312aaaaa12或,aa312由中元素互异性矛盾;检验知与集合ABABa,aa12由,解得1a,或解得21aa检验适合;.21aa或例题讲解例题讲解1.判断下列关系是否正确判断下列关系是否正确)1 (aa 123321)2(,00)3(0)4(0)5(0)6((正确)(正确)(正确)(正确)(正确)(正确)(正确)(正确)(错误错误)(错误错误)自我演练自我演练自我演练自我演练 1.能判断存在子集关系的两个集合谁是谁的能判断存在子集关系的两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论