




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 教 学 内 容 二次函数与幂函数1 二次函数的定义与解析式(1)二次函数的定义形如:f(x)ax2bxc_(a0)的函数叫作二次函数(2)二次函数解析式的三种形式一般式:f(x)ax2bxc_(a0)顶点式:f(x)a(xm)2n(a0)零点式:f(x)a(xx1)(xx2)_(a0)2 二次函数的图像和性质解析式f(x)ax2bxc(a>0)f(x)ax2bxc(a<0)图像定义域(,)(,)值域单调性在x上单调递减;在x上单调递增在x上单调递增;在x上单调递减奇偶性当b0时为偶函数,b0时为非奇非偶函数顶点对称性图像关于直线x成轴对称图形3. 幂函数形如yx (R)的函数称为
2、幂函数,其中x是自变量,是常数4 幂函数的图像及性质(1)幂函数的图像比较(2)幂函数的性质比较yxyx2yx3yxyx1定义域RRR0,)x|xR且x0值域R0,)R0,)y|yR且y0奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性增x0,)时,增;x(,0时,减增增x(0,) 时,减;x(,0)时,减难点正本疑点清源1 二次函数的三种形式(1)已知三个点的坐标时,宜用一般式(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式(3)已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便2 幂函数的图像(1)在(0,1)上,幂函数中指数越大,函数图
3、像越靠近x轴,在(1,)上幂函数中指数越大,函数图像越远离x轴(2)函数yx,yx2,yx3,yx,yx1可作为研究和学习幂函数图像和性质的代表1 已知函数f(x)x22(a1)x2在区间(,3上是减函数,则实数a的取值范围为_答案(,2解析f(x)的图像的对称轴为x1a且开口向上,1a3,即a2.2 (课本改编题)已知函数yx22x3在闭区间0,m上有最大值3,最小值2,则m的取值范围为_答案1,2解析yx22x3的对称轴为x1.当m<1时,yf(x)在0,m上为减函数ymaxf(0)3,yminf(m)m22m32.m1,无解当1m2时,yminf(1)122×132,ym
4、axf(0)3.当m>2时,ymaxf(m)m22m33,m0,m2,无解1m2.3 若幂函数y(m23m3)xm2m2的图像不经过原点,则实数m的值为_答案1或2解析由,解得m1或2.经检验m1或2都适合4 (人教A版教材例题改编)如图中曲线是幂函数yxn在第一象限的图像已知n取±2,±四个值,则相应于曲线C1,C2,C3,C4的n值依次为_答案2,2解析可以根据函数图像是否过原点判断n的符号,然后根据函数凸凹性确定n的值5 函数f(x)x2mx1的图像关于直线x1对称的充要条件是()Am2 Bm2Cm1 Dm1答案A解析函数f(x)x2mx1的图像的对称轴为x,且
5、只有一条对称轴,所以1,即m2.题型一求二次函数的解析式例1已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试确定此二次函数思维启迪:确定二次函数采用待定系数法,有三种形式,可根据条件灵活运用解方法一设f(x)ax2bxc (a0),依题意有解之,得所求二次函数解析式为f(x)4x24x7.方法二设f(x)a(xm)2n,a0.f(2)f(1),抛物线对称轴为x.m.又根据题意函数有最大值为n8,yf(x)a28.f(2)1,a281,解之,得a4.f(x)4284x24x7.方法三依题意知,f(x)10的两根为x12,x21,故可设f(x)1a(x2)(x1),a0.
6、即f(x)ax2ax2a1.又函数有最大值ymax8,即8,解之,得a4或a0(舍去)函数解析式为f(x)4x24x7.探究提高二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果 已知二次函数f(x)同时满足条件:(1)f(1x)f(1x);(2)f(x)的最大值为15;(3)f(x)0的两根平方和等于17.求f(x)的解析式解依条件,设f(x)a(x1)215 (a<0),即f(x)ax22axa15.令f(x)0,即ax22axa150,x1x22,x1x21.xx(x1x2)22x1
7、x242217,a2,f(x)2x24x13.题型二二次函数的图像与性质例2已知函数f(x)x22ax3,x4,6(1)当a2时,求f(x)的最值;(2)求实数a的取值范围,使yf(x)在区间4,6上是单调函数;(3)当a1时,求f(|x|)的单调区间思维启迪:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用解(1)当a2时,f(x)x24x3(x2)21,由于x4,6,f(x)在4,2上单调递减,在2,6上单调递增,f(x)的最小值是f(2)1,又f(4)35,f(6)15,故f(x)的最大值是35.(2)由于函数
8、f(x)的图像开口向上,对称轴是xa,所以要使f(x)在4,6上是单调函数,应有a4或a6,即a6或a4.(3)当a1时,f(x)x22x3,f(|x|)x22|x|3,此时定义域为x6,6,且f(x),f(|x|)的单调递增区间是(0,6,单调递减区间是6,0探究提高(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解 若函数f(x)2x2mx1在区间1,)上递增,则f(1)的取值范围是_答
9、案(,3解析抛物线开口向上,对称轴为x,1,m4.又f(1)1m3,f(1)(,3题型三二次函数的综合应用例3若二次函数f(x)ax2bxc (a0)满足f(x1)f(x)2x,且f(0)1.(1)求f(x)的解析式;(2)若在区间1,1上,不等式f(x)>2xm恒成立,求实数m的取值范围思维启迪:对于(1),由f(0)1可得c,利用f(x1)f(x)2x恒成立,可求出a,b,进而确定f(x)的解析式对于(2),可利用函数思想求得解(1)由f(0)1,得c1.f(x)ax2bx1.又f(x1)f(x)2x,a(x1)2b(x1)1(ax2bx1)2x,即2axab2x,因此,f(x)x2
10、x1.(2)f(x)>2xm等价于x2x1>2xm,即x23x1m>0,要使此不等式在1,1上恒成立,只需使函数g(x)x23x1m在1,1上的最小值大于0即可g(x)x23x1m在1,1上单调递减,g(x)ming(1)m1,由m1>0得,m<1.因此满足条件的实数m的取值范围是(,1)探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图像贯穿为一体因此,有关二次函数的问题,数形结合,密切联系图像是探求解题思路的有效方法用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点 已知函数
11、f(x)x2mxn的图像过点(1,3),且f(1x)f(1x)对任意实数都成立,函数yg(x)与yf(x)的图像关于原点对称(1)求f(x)与g(x)的解析式;(2)若F(x)g(x)f(x)在(1,1上是增函数,求实数的取值范围解(1)f(x)x2mxn,f(1x)(1x)2m(1x)nx22x1mxnmx2(m2)xnm1,f(1x)(1x)2m(1x)nx22x1mxmnx2(2m)xnm1.又f(1x)f(1x),m22m,即m2.又f(x)的图像过点(1,3),312mn,即mn2,n0,f(x)x22x,又yg(x)与yf(x)的图像关于原点对称,g(x)(x)22×(x
12、),g(x)x22x.(2)F(x)g(x)f(x)(1)x2(22)x,当10时,F(x)的对称轴为x,又F(x)在(1,1上是增函数或.<1或1<0.当10,即1时,F(x)4x显然在(1,1上是增函数综上所述,的取值范围为(,0题型四幂函数的图像和性质例4已知幂函数f(x)xm22m3 (mN*)的图像关于y轴对称,且在(0,)上是减函数,求满足(a1)<(32a)的a的取值范围思维启迪:由幂函数的性质可得到幂指数m22m3<0,再结合m是整数,及幂函数是偶函数可得m的值解函数在(0,)上递减,m22m3<0,解得1<m<3.mN*,m1,2.又
13、函数的图像关于y轴对称,m22m3是偶数,而222×233为奇数,122×134为偶数,m1.而f(x)x在(,0),(0,)上均为减函数,(a1)<(32a)等价于a1>32a>0或0>a1>32a或a1<0<32a.解得a<1或<a<.故a的取值范围为.探究提高(1)幂函数解析式一定要设为yx (为常数的形式);(2)可以借助幂函数的图像理解函数的对称性、单调性方法与技巧1 二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从开口
14、方向;对称轴位置;判别式;端点函数值符号四个方面分析(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解2 与二次函数有关的不等式恒成立问题(1)ax2bxc>0,a0恒成立的充要条件是.(2)ax2bxc<0,a0恒成立的充要条件是.3 幂函数yx(R),其中为常数,其本质特征是以幂的底x为自变量,指数为常数失误与防范1 对于函数yax2bxc,要认为它是二次函数,就必须满足a0,当题目条件中未说明a0时,就要讨论a0和a0两种情况.2 幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像
15、最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 (2011·浙江)设函数f(x)若f()4,则实数等于()A4或2 B4或2C2或4 D2或2答案B解析当0时,f()4,得4;当>0时,f()24,得2.4或2.2 已知函数f(x)x22x2的定义域和值域均为1,b,则b等于()A3 B2或3 C2 D1或2答案C解析函数f(x)x22x2在1,b上递增,由已知条件即解得b2.3 设abc>0,二次函数f(x)ax2bxc的图像可能是 ()答案D解析由A,C,
16、D知,f(0)c<0.abc>0,ab<0,对称轴x>0,知A,C错误,D符合要求由B知f(0)c>0,ab>0,x<0,B错误4 设二次函数f(x)ax22axc在区间0,1上单调递减,且f(m)f(0),则实数m的取值范围是()A(,0 B2,)C(,02,) D0,2答案D解析二次函数f(x)ax22axc在区间0,1上单调递减,则a0,f(x)2a(x1)<0,x0,1,所以a>0,即函数图像的开口向上,对称轴是直线x1.所以f(0)f(2),则当f(m)f(0)时,有0m2.二、填空题(每小题5分,共15分)5 二次函数的图像过点
17、(0,1),对称轴为x2,最小值为1,则它的解析式为_答案y(x2)216 已知函数f(x)x22(a1)x2在区间(,3上是减函数,则实数a的取值范围为_答案(,2解析f(x)的图像的对称轴为x1a且开口向上,1a3,即a2.7 当时,幂函数yx的图像不可能经过第_象限答案二、四解析当1、1、3时,yx的图像经过第一、三象限;当时,yx的图像经过第一象限三、解答题(共22分)8 (10分)已知二次函数f(x)的二次项系数为a,且f(x)>2x的解集为x|1<x<3,方程f(x)6a0有两相等实根,求f(x)的解析式解设f(x)2xa(x1)(x3) (a<0),则f(
18、x)ax24ax3a2x,f(x)6aax2(4a2)x9a,(4a2)236a20,即(5a1)(a1)0,解得a或a1(舍去)因此f(x)的解析式为f(x)(x1)(x3)9 (12分)是否存在实数a,使函数f(x)x22axa的定义域为1,1时,值域为2,2?若存在,求a的值;若不存在,说明理由解f(x)(xa)2aa2.当a<1时,f(x)在1,1上为增函数,a1(舍去);当1a0时,a1;当0<a1时,a不存在;当a>1时,f(x)在1,1上为减函数,a不存在综上可得a1.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1 已知幂函
19、数f(x)x的图像经过点,则f(4)的值等于()A16 B.C2 D.答案D解析将点代入得:2,所以,故f(4).2 已知函数f(x)2mx22(4m)x1,g(x)mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是()A(0,2) B(0,8)C(2,8) D(,0)答案B解析当m0时,显然不合题意;当m>0时,f(0)1>0,若对称轴0,即0<m4,结论显然成立;若对称轴<0,即m>4,只要4(4m)28m4(m8)(m2)<0即可,即4<m<8,综上,0<m<8,选B.3 已知二次函数yx22ax1在区间(2,3)内是单调函数,则实数a的取值范围是()Aa2或a3 B2a3Ca3或a2 D3a2答案A解析由函数图像知,(2,3)在对称轴xa的左侧或右侧,a3或a2.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以人为本提升医护团队工作效率与质量的研究报告
- 医疗AI的隐私保护与法规要求
- 医疗健康管理中的个性化服务设计与实施
- AI临床决策支持系统的科技发展及其挑战
- 人性化医疗服务的国际比较与借鉴
- 企业内部健康管理探索员工对新型医疗科技的接受度
- 学校体育教师的工作总结模版
- 看开学第一课心得体会模版
- 医疗AI在公共卫生领域的伦理应用探讨
- 业务撮合合同范例
- 2024年烟台龙口市卫生健康局所属事业单位招聘工作人员笔试真题
- 2025年FRM金融风险管理师考试专业试卷(金融风险管理案例分析)
- GB/T 2087-2001圆柱螺旋拉伸弹簧尺寸及参数(半圆钩环型)
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 与幼儿园相关的法律知识及案例(课堂PPT)
- 数字货币MASK发行机制收益制度解读课件
- 液压泵盖夹具设计说明书(含毛坯图)
- 2023年BIM工程师继续教育题库含答案【b卷】
- 20章-过渡金属(Ⅰ)-钛钒铬锰讲解课件
- 幼儿园绘本故事:《小熊不刷牙》 课件
- 外墙保温脱落维修方案范文通用5篇
评论
0/150
提交评论