周期性势场中电子运动的特点_第1页
周期性势场中电子运动的特点_第2页
周期性势场中电子运动的特点_第3页
周期性势场中电子运动的特点_第4页
周期性势场中电子运动的特点_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-周期性势场中电子运动的特点晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。晶体内部结构的周期性可以用晶格来形象地描绘。晶格是由无数个相同单元周期性地重复排列组成的。晶格可以用基矢量来描述。 以任一格点为原点, 沿原胞的三个互不平行的边为晶格一组矢量称为原胞的基矢量。记作 宜,£,瓦。晶格的任一格点的位置可以用晶格矢量3品=m + m2a2 + m3a3 = £ m( mi, m2, m3是任意整数)(1)i=1-、 T =* 、,一 一、一.确定。r和r =r + %为不同原胞的对应点。二者相差一个晶格矢量。可以说不同原胞的对应点相差一个晶格矢量。反过来也

2、可以说相差一个晶格矢量的两点是不同原胞的对应点。通过晶格矢量的平移可以定出所有原胞的位置,这个就是晶体内部结构的周期性。晶体内部结构的周期性意味着晶体内部不同原胞的对应点处原子的排列情况相同,晶体的微观物理性质相同。比如,不同原胞的对应点晶体的电子的势能函数相同,即- - -V(r)=V(r)=V(r+RJ(2)式(2)是晶体的周期性势场的数学描述。图1给出一维周期性势场的示意图。Vi, V2, V3,分别代表原子1 , 2, 3,的势场, V代表叠加后的晶体势场。000123图1 一维周期性势场示意图根据周期性势场的形状不难想象,在周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可

3、以在其它的原子附近运动,即可以在整个晶体中运动。 例如图1中具有能量E1或日的电子在可以在原子 1的势场中运动,既局域化运动。根据量子力学的隧道效应, 它还可以通过隧道效应越过势垒V到势阱2,势阱3,中运动,既共有化运动。而处于巳能态电子受原子核束缚较强,势垒V-E2较大,电子从势阱1穿过势垒进入势阱 2的概率就比较小,既共有化程度低。但对于束缚能较弱的状态巳,由于势垒V-E1的值较小,穿透隧道的概率就比较大,既共有化程度高。晶体中(也就是周期性势场中)的电子的运动是既有局域化的特征又有共有化特征。在单电子近似条件下,一个电子所受的库仑作用仅随它自己的位置的变化而变化。于是它的运动便由下面仅包

4、含这个电子的坐标的薛定谓方程式所决定-'、2 V r - r = E- rIL 2m式中_Mv2 电子的动能算符 2mV ()一 电子的势能算符,它具有晶格的周期性E电子的能量甲(F)电子的波函数h九=h为曾朗克常数,,称为约化普朗克常数2 二(3)布洛赫定理指出:如果势函数V(F)有晶格的周期性,即V(r) =V(r Rm)(4)则方程式(3)的解甲(r)具有如下形式ikr.VkVr) = e uHr)(5)式中函数uk<rj具有晶格的周期性,即Uk rRm = Uk r以上陈述即为布洛赫定理。(6 )由于W*+Rm) = ek(rEu*+RJ=ekRmeikrW)=eikRm

5、'k(r)+ Rm) = eikRk<)( 7)(7)说明,晶体中不同原胞对应点处的电子波函数只差一个模量为1的因子 k R ,"所以平klr+Rm,、2江r)。从而可知在晶体中各个原胞对应点处电子出现的概率相同。即电子可以在整个晶体中运动一共有化运动。式(7)是布洛 赫定理的另一种表述。根据布洛赫公式(5)可以看出:1. k是标志电子运动状态的量。波矢量k只能取实数值,若k取为复数,则 在波函数中将出现衰减因子,这样的解不能代表电子在完整晶体中的稳定状态。2. 平面波因子4与自由电子的波函数相同,它描述电子在各原胞之间的运 动一共有化运动。3. 因子uk-(r)则描述

6、电子在原胞中的运动一局域化运动。它在各原胞之间周 期性地重复着。根据布洛赫公式 可以看出:24. 卜+&)| =|甲qr),这说明电子在各原胞的对应点上出现的概率相等。需要指出的是:5. 由于晶体中电子的波函数不是单纯的平面波,而是还乘以一个周期性函h数。所以它们的动量算符一与哈密顿算符H是不可交换的。因此,晶体中电i子的动量不取确定值。由于波矢量k与约化普朗克常数”的乘积是一个具有动量 量纲的量,对于在周期性势场中运动的电子,通常把p = k称为“晶体动量”或 电子的“准动量”结论:通过以上的分析可知,在周期性势场中的电子具有局域化运动和共有化运动的特征;标志电子的运动状态的波矢量k

7、只能取实数;电子出现在各原胞的对应点上 出现的概率相等;电子不仅具有经典力学中动量,而且为了处理问题的方便还 定义了一个具有动量量纲的准动量。-半导体的导电性半导体导电的微观机理半导体在外电场作用下是否存在电流并不取决于单个电子的行为,而是取决 于整个晶体中所有电子运动的总和。1. 从能带的角度理解半导体导电性能带理论指出,一个晶体是否具有导电性,取决于它是否有不满的能带存在。 而固体中能带被电子填充的情况只能有三种。第一种情况是空带,即能带中的 电子态是空的,没有电子占据;第二种情况是满带,即能带中的电子态完全被 电子所占据,不存在没有电子的空状态;第三种情况是不满带,即电子填充了 能带中的

8、一部分电子态,还有一部分电子态是空的。在外加电场的作用下,对于满带电子从布里渊区边界的两边流进或流出,由 于布里渊区边界的两边的电子状态是等价性,总体上不呈现电流。对于被电子部分填充的能带情况,电子对称地占据能量较低的状态下图 1-(a)所示,没有外电场作用时不呈现出电流。当存在如下图1-(b)所示电场时, 电子在能带中的分布发生变化,从而呈现出电流。 E=0(b) E0图1外电场作用下部分填充的能带中电子按能量分布的变化半导体中部分填充的能带有两种情况:一种是导带中的电子;另一种是价带 中的空穴。半导体导电能力的强弱与载流子数目多少相关。对于本征半导体,在0K时,导带为空能带,而价带为满带,

9、此时本征半导 体不具有导电能力。在一定温度下,电子容易从满带激发到空带中去。这样一 来,原来空着的能带有了少量电子,变成了不满带;原来被电子充满的能带因 失去一些电子也变成了不满带,于是半导体就有了导电性。在半导体中,随着 温度的升高,从满带进入到空带中的电子数急剧增加。这就是半导体的电导率 随着温度升高而增大的根本原因。对于杂质半导体,通常在常温下杂质即可产生电离,结果在导带中存在大量 的电子或在价带中存在大量的空穴,从而使其导电。由于杂质半导体中载流子 的数量与杂质浓度和杂质的电离强弱有关,所以其导电能力也与掺杂浓度和杂 质的电离程度紧密相关。在严格周期性势场(理想)中运动的载流子在电场力

10、的作用下将获得加速度, 其漂移速度应越来越大。而实际晶体中晶体的不完整性,如:杂质、缺陷、晶 格热振动将对电子产生散射,从而阻碍电子速度的增加。2, 半导体导电的晶格解释在一定温度下,共价键价上的电子 挣脱了价的束缚,进入到晶格空间中 成为准自由电子,这个电子在外电场的 作用下运动而形成电子电流。在价上 的电子进入晶格后留下空穴,这个空穴 是要重新被电子填充,同时在另一位置 上产生新的空穴,这一过程即形成空穴 电流°图2晶格中空穴和电子导电示意囹在无外电场时,载流子作无规则的热运动。 向各方向运动的几率相等,没有载流子作定向运动,因而不存在电流。当加外电场后,载流子作定向运动,形成宏

11、观电流。通常通过半导体的电流是不均匀的。需要用电流密度才能准确地体现电流分布情况。漂移运动迁移率电导率在有外场存在时,载流子除了做无规则的热运动以外,还存在着沿一定方向 的有规则的漂移运动。如果在半导体样品两端加上电压,就会有电流在半导体 中流过,这就是电导现象。电导现象是由于半导体中的载流子在外电场中做漂 移运动而引起的。漂移运动是规则的,是引起电荷流动的原因。迁移率和电导 率是描述漂移运动的重要物理量。载流子的平均漂移速度分别为Vn = - 和Vp = 。其中Hn和分别 称为电子的迁移率和空穴的迁移率。迁移率的物理意义是在单位电场强度电场 作用下,载流子所获得的漂移速度的绝对值。它是描述载流子在电场中做漂移 运动的难易程度的物理量。迁移率受电离杂质散射的影响在低温下的重掺杂样 品中表现得最为显著,这时的晶格散射则可忽略不计。低温降低了载流子的速 度以致于电子和空穴运动经过固定的带电离子时,容易被其库仑力所偏转。当 温度增加时,快速运动的载流子不太容易被带电离子所偏转,其被散射的可能 性就减小。在给定温度下,迁移率会随着杂质浓度的增加而下降。N型半导体的电导率公式为crn=nqPn。对于N型半导体,在杂质电离范围 内,起导电作用的主要是导带电子。P型半导体的电导率为汀° = pg% 。在半导 p p体中电子和空穴同时起作用的情况下,电导率o是二者之和:。=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论