版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 观察下列各个函数的图象,并说说它们观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律分别反映了相应函数的哪些变化规律: 1、观察这三个图象,你能说出图象的特征吗?、观察这三个图象,你能说出图象的特征吗?2、随随x的增大,的增大,y的值有什么变化?的值有什么变化?画出下列函数的图象,观察其变化规律:画出下列函数的图象,观察其变化规律: 1、从左至右图象上升还是下降、从左至右图象上升还是下降 _?2、在区间在区间 _上,随着上,随着x的增大,的增大,f(x)的值随的值随着着 _ f(x) = x(-,+)增大增大上升上升1、在区间、在区间 _ 上,上,f(x)的值随着的值随着x的
2、增大而的增大而 _2、 在区间在区间 _ 上,上,f(x)的值随的值随着着x的增大而的增大而 _ f(x) = x2(-,0(0,+)增大增大减小减小画出下列函数的图象,观察其变化规律:画出下列函数的图象,观察其变化规律: x-4 -3 -2 -1 01234f(x)=x2 16941014916 .)()()()(,)(,212122221121增增函函数数上是,在区间们就说函数,这时我时,有,当,得到上任取两个,在区间00 2xxfxfxfxxxxfxxfxx一、函数单调性定义一、函数单调性定义 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果对如果对于定义域于定义域I
3、内的某个区间内的某个区间D内的任意两个自变量内的任意两个自变量x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在区间在区间D上是上是增函数增函数 1增函数增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在区间D上是减函数减函数 2减函数减函数 1、函数的单调性是在定义域内的某个区间上函数的单调性是在定义域内的某个区间上的性质,是函数的的性质,是函数的局部性质局部性质;注意:注意: 2 、必须是对于区间必须是对于区间D内的内的任意任意两个自变量两个自变量x1,x2
4、;当;当x1x2时,时,总有总有f(x1)f(x2) 分别是增函数和减函数分别是增函数和减函数. . 如果函数如果函数y=f(x)在某个区间上是增函在某个区间上是增函数或是减函数,那么就说函数数或是减函数,那么就说函数y=f(x)在这在这一区间具有(严格的)一区间具有(严格的)单调性单调性,区间,区间D叫叫做做y=f(x)的的单调区间单调区间. 二二函数的单调性定义函数的单调性定义yoxoyxyoxyoxyox在 增函数在 减函数ab2-,,2ab在 增函数在 减函数ab2-,,2ab在(-,+)是减函数在(-,0)和(0,+)是减函数在(-,+)是增函数在(-,0)和(0,+)是增函数yox
5、例1、下图是定义在区间-5,5上的函数y=f(x),根据图象说出函数的单调区间,以及在每个区间上,它是增函数还是减函数?解:函数解:函数y=f(x)的单调区间有的单调区间有 5,2),2,1),1,3),3,5 其中其中y=f(x)在区间在区间5,2), 1,3)是减函数,是减函数, 在区间在区间2,1), 3,5 上是增函数。上是增函数。 例例2、物理学中的玻意耳定律、物理学中的玻意耳定律 告告诉我们,对于一定量的气体,当其体积诉我们,对于一定量的气体,当其体积V减小时,减小时,压强压强p将增大。试用函数的单调性证明之。将增大。试用函数的单调性证明之。)( 为正常数kVkp 证明:证明:根据
6、单调性的定义,设V1,V2是定义域(0,+)上的任意两个实数,且V1V2,则21212121)()(VVVVkVkVkVpVp由V1,V2 (0,+)且V10, V2- V1 0又k0,于是0)()(21VpVp)()(12VpVp 即 所以,函数 是减函数.也就是说,当体积V减少时,压强p将增大.),0(,VVkp取值定号变形作差结论结论三三判断函数单调性的方法步骤判断函数单调性的方法步骤 1 任取任取x1,x2D,且,且x1x2;2 作差作差f(x1)f(x2);3 变形(通常是因式分解和配方);变形(通常是因式分解和配方);4 判断符号判断符号 (即判断差即判断差f(x1)f(x2)的正
7、负);的正负);5 下结论(即指出函数下结论(即指出函数f(x)在给定的区间在给定的区间D上的上的单调性)单调性) 利用定义证明函数利用定义证明函数f(x)在给定的区间在给定的区间D上的单上的单调性的一般步骤:调性的一般步骤:思考?思考:画出反比例函数的图象1 这个函数的定义域是什么?2 它在定义域I上的单调性怎样?证明你的结论 证明:证明:设设x1,x2是是上任意两个实数,上任意两个实数,且且x10,又由又由x10所以所以f(x1)- f(x2)0, 即即f(x1) f(x2) , 0因此因此 f(x)=1/x 在在(0,+)上是减上是减函数。函数。取值判断符号变形作差下结论四、归纳小结四、归纳小结 函数的单调性一般是先根据图象判断根据图象判断,再利再利用定义证明用定义证明画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步: 取取 值值 作作 差差 变变 形形 判断符号判断符号 下结论下结论 1 书面作业:课本书面作业:课本P45 习题习题13(A组)组) 第第3、 4题题五、作业五、作业1、法二:作商的方法由x10)yxoy=kx+b (k0)讨论一般性讨论一般性问题:1、当、当k变化时函数的单调性有何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年食品安全考试试题(答案+解析)
- 2025钢筋培训试题及答案
- 2025年新版食品安全法知识考试题库及参考答案
- 2025年网络安全基础知识学习考试题库(附答案)
- 土木建筑监理工程师从计划到执行的全过程指南
- 室内设计师空间美学与施工工艺全程解析
- 健身教练日常工作计划及客户锻炼指南
- 宠物疾病案例分析与治疗方案集
- 测试用例设计面试题及思路
- 面试碳排放管理员高级职业素养与职业规划考察题
- GB/T 18916.1-2021取水定额第1部分:火力发电
- GB 17568-2008γ辐照装置设计建造和使用规范
- 妊娠与肾脏疾病-陶冶主任课件
- 新形态一体化教材建设的探索与实践课件
- 2022年石家庄交通投资发展集团有限责任公司招聘笔试试题及答案解析
- 四川大学经济学院党政办公室工作人员招考聘用2人【共500题附答案解析】模拟检测试卷
- 《园林花卉学》课后题及答案
- 全国连片特困地区分县名单
- 15堆肥工艺流程图
- GB∕T 25997-2020 绝热用聚异氰脲酸酯制品
- 《工程量确认单》word版
评论
0/150
提交评论