平面六杆机构的运动分析_第1页
平面六杆机构的运动分析_第2页
平面六杆机构的运动分析_第3页
平面六杆机构的运动分析_第4页
平面六杆机构的运动分析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平面六杆机构的运动分析2机械原理大作业(一)平面六杆机构的运动分析班 级:学 号:姓 名: 同组者: 完成时间:一.题目1 . 1说明如图所示为一片面六杆机构各构件尺寸如表格 1所示,又知 原动件1以等角速度3=1rad/s沿逆时针方向回转,试求各从动件 的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1. 2数据组号L1L2L 2L3L4L5L6CtXGyG1-A26.5105.665.067.587.534.425.0600153.541.7表格1条件数据1. 3要求三人一组,编程计算出原动件从0360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

2、二.解题步骤由封闭图形ABCD可得:11+比 L+L由封闭图形AGFECD可得于是有:11 sin、l2sn2 = l 3sin七111 C0S1 l2cos)2 T4 l 3sin七2I1C0S1 l2cos2 l,2sin2 l5cos5 = l6cos6 153.5 3 l1sin1 l2sin2 Tcos l5sin5 = l6sin6 41.74对以上1到4导可得-12 cos2 2 l 3cos% 3 T1 cos1 1l2sine2®2 T 3si"3®3 = T1sin脂气< l5sin%®5 T6sine6" 6= &q

3、uot;sin%气一缶 2(l2sin2 l,2cos2)< l5cos55 T6cos6" 6= T1cos皆1 一切 2(l2cos2 + lsin%)811cos112sin2l . . I l . i211sm112cos21 11 cos112cos2 1,2sin2/_ "sin%i12sin2 12cos2T3sin30022213co§3003015cos5-16 cos 6520ksin、-16sin62写做矩阵形式:-12cos21Kcosh00112sin2撬宙300T2cos2 12sin20-确死'_ 12sin2 12co

4、s200。25Mos211C0S1l i3 =hsini©Ico 151 11sin111-611 cos1对上述矩阵求导可得:13*3002 1 11gn%00.,0(.30"sin%-16siff6Ila 150,cos516cos61 11*6T2cos2I .12sin212sin2 T2cos2_12cos2 12sin2E点横坐标及对应的速度和加速度rxe 11C0S/1 2 Co2sin林x="sini 11 2Sin/122cos2 222,2 /lqx=-仍 11 cos 仪 1 1 1Si ng 1 2 安os12 & 声i n 22

5、12Si n9 2c(E点纵坐标及对应的速度和加速度:厂 ye=11 sin% + 12sine 2 T,2 cos。2vey = 11 cos 尸 1 +12 cos2 2 + 1 ,2 sin 2切 222.a f 1 11 sin脂 + « 111 cos% 切 2 12 sin 2 + 口 212 cos9 2 +2. /° 2 1 2 cos% 1 四甘 2'§ = Jxe2 + ye2/ Ve = Jvex2 * Vey2电=农2 +如三.计算程序框图四. 源程序1. #include "stdlib.h"#include

6、"math.h"#include "stdio.h" int agaus(a,b,n) int n;double a,b;( int *js,l,k,i,j,is,p,q;double d,t;js=malloc(n*sizeof(int);l=1;for (k=0;k<=n-2;k+)( d=0.0;for (i=k;i<=n-1;i+)for (j=k;j<=n-1;j+)( t=fabs(ai*n+j);if (t>d) ( d=t; jsk=j; is=i;if (d+1.0=1.0) l=0; else( if (jsk

7、!=k)for (i=0;i<=n-1;i+)( p=i*n+k; q=i*n+jsk; t=ap; ap=aq; aq=t;if (is!=k)( for (j=k;j<=n-1;j+)( p=k*n+j; q=is*n+j;t=ap; ap=aq; aq=t;t=bk; bk=bis; bis=t;if (l=0)( free(js); printf("failnH);return(0);d=ak*n+k;for (j=k+1;j<=n-1;j+)( p=k*n+j; ap=ap/d; bk=bk/d;for (i=k+1;i<=n-1;i+)( for

8、(j=k+1;j<=n-1;j+)( p=i*n+j;ap=ap-ai*n+k*ak*n+j;bi=bi-ai*n+k*bk;d=a(n-1)*n+n-1;if (fabs(d)+1.0=1.0)( free(js); printf("failn");return(0);bn-1=bn-1/d;for (i=n-2;i>=0;i-)( t=0.0;for (j=i+1;j<=n-1;j+)t=t+ai*n+j*bj;bi=bi-t;jsn-1=n-1;for (k=n-1;k>=0;k-)if (jsk!=k)( t=bk; bk=bjsk; bjs

9、k=t;free(js);return(1);2.程序二求解各杆的角度和E点坐标(杆四的角度始终为零,程序中不再求解)/* 输出文件 Output.txt*/#include "stdio.h"#include <conio.h>平面六杆机构的运动分析10#include "dnetn.c"#include "agaus.c"#include <math.h>#define PI 3.14159265358979#define ANGLE (PI/180)#define ALPHA (PI*60/180)/*初

10、始杆长:*/static double dLen7=65.0, 26.5, 105.6, 67.5, 87.5, 34.4, 25.0;/*G点的坐标*/static double dGxy2=153.5,41.7;static double x0 = 0 * ANGLE;main()int i,k;double eps,t,h,xe,ye;int nTemp=0;FILE *pf;/*各角位移的初始估计值*/static doublex4=36.80*ANGLE,69.57*ANGLE,119.00*ANGLE,48.92*ANGLE;pf = fopen("Output.txt&

11、quot;,"w");t=0.1; h=0.1; eps=0.00000001; k=100;for (nTemp = 0; nTemp <= 36; nTemp+)x0 = nTemp * 10 * ANGLE;i=dnetn(4,eps,t,h,x,k);printf("ni=%dn",i);printf("x0=%lfn",x0);fprintf(pf,"%dt",10*nTemp);for (i=0; i<=3; i+)printf("x(%d)=%13.7lfn",i,xi

12、/ANGLE);fprintf(pf,"%lft",xi/ANGLE);xe=dLen1 * cos(x0)+ dLen2 * cos(x0)+dLen0 * cos(ALPHA-(x0);ye=dLen1 * sin(x0)+ dLen2 * sin(x0)-dLen0 * sin(ALPHA-(x0);printf("xe=%13.7lfnye=%13.7lfn",xe,ye);fprintf(pf,"n");printf("n");fclose(pf);getch();/*建立牛顿法矩阵*/void dnet

13、nf(x,y,n) int n;double x,y;(y0 = dLen1 * cos(x0) + dLen2 * cos(x0) - dLen3 * cos(x1)-dLen4;y1 = dLen1 * sin(x0) + dLen2 * sin(x0) - dLen3 * sin(x1);y2 = dLen1 * cos(x0) + dLen2 * cos(x0) + dLen5* cos(x2) - dLen6 * cos(x3) - dGxy0 +dLen0 * cos(ALPHA-(x0);y3 = dLen1 * sin(x0) + dLen2 * sin(x0) + dLen5

14、* sin(x2) - dLen6 * sin(x3) - dGxy1-dLen0 * sin(ALPHA-(x0);n = n;return;3. 程序三求解各杆的角速度和E点速度(杆四的角速度始终为零,程序中不再求解)/*输出文件 Output2.txt*/#include "stdio.h"#include "math.h"#include "agaus.c"#include <conio.h>#define PI 3.14159265358979#define ANGLE (PI/180)#define ALPHA

15、 (PI*35/180)/*初始杆长:依次为*/static double dLen7=65.0, 26.5, 105.6, 67.5, 87.5, 34.4, 25.0;/* G点的坐标*/static double dGxy2=153.5,41.7;static double x0 = 0 * ANGLE;static double w1 = 1.0;double Vex,Vey;main()int i,j,nTime;FILE *fInput;i o平面六杆机构的运动分析1 2FILE *fOutput2;int nX0,nCounter;double dTemp4=0;static d

16、ouble a44= 0.;static double b4=0.;/*将agu_01.C的输出文件output.txt作为输入文件,继续计算*/fInput = fopen("output.txt”,"r”);fOutput2 = fopen("output2.txt”,"w”);for(nTime=0;nTime<=36;nTime+)fscanf(fInput,"%d”,&nX0);x0=nX0*ANGLE;printf("x0= %lfn",x0);for (nCounter=0;nCounter<

17、;4;nCounter+)fscanf(fInput,"%lf",&dTempnCounter);for (nCounter=0;nCounter<4;nCounter+)dTempnCounter = dTempnCounter * ANGLE;/*建立高斯方程组矩阵*/a00 = - dLen2 * sin(dTemp0);a01 = dLen3 * sin(dTemp1);a02 = 0.;a03 = 0.;a10 = dLen2 * cos(dTemp0);a11 = - dLen3 * cos(dTemp1);a12 = 0.;a13 = 0.;a2

18、0 = dLen2 * sin(dTemp0)- dLen0 * sin(ALPHA-(dTemp0);a21 =0.;a22 = dLen5 * sin(dTemp2);a23 = -dLen6 * sin(dTemp3);a30 = dLen2 * cos(dTemp0)+dLen0 * cos(ALPHA-(dTemp0);a31 = 0.;a32 = dLen5 * cos(dTemp2);a33 = - dLen6 * cos(dTemp3);b0 = dLen1 * sin(x0) * w1;b1 = - dLen1 * cos(x0) * w1;b2 = -dLen1* sin(

19、dTemp0)* w1 ;b3 =-dLen1* cos(dTemp0)* w1 ;if (agaus(a,b,4)!=0)for (i=0;i<=3;i+)printf("w%d=%lfn”,i,bi);fprintf(fOutput2,"%lf ",bi);Vex=-dLen1 * sin(x0) * w1-dLen2 * sin(dTemp0) * b0+ dLen0 * sin(ALPHA-(dTemp0) *b0;Vey=dLen1 * cos(x0) * w1+dLen2 * cos(dTemp0) * b0+ dLen0 * cos(ALPHA

20、-(dTemp0) * b0; printf("Vex=%lfnVey=%lfn",Vex,Vey);fprintf(fOutput2,"n");printf("n");fclose(flnput);fclose(fOutput2);getch();4. 程序四求解各杆和点E的角加速度(杆四角加速度始终为零,这里不再求解)/*输出文件 Output3.txt*/#include "stdio.h"#include "math.h"#include "agaus.c"#incl

21、ude <conio.h>#define PI 3.14159265358979#define ANGLE (PI/180)#define ALPHA (PI*35/180)/*初始杆长:依次为*/static double dLen7=65.0, 26.5, 105.6, 67.5, 87.5, 47.2, 37.8;/*G点的坐标*/static double dGxy2=153.5,41.7;static double x0 = 0 * ANGLE;static double w1 = 1.0;main()1 2平面六杆机构的运动分析14int i,nTime;FILE *f

22、Input2;FILE *fOutput3;int nX0,nCounter;double Aex,Aey;double dSeta5=0.;double dOmiga4 = 0.;static double a44= 0.;static double b4=0.;/*将agu_02.C的输出文件output2.txt作为输入文件,继续计算*/fInput2 = fopen("output2.txt”,"r”);fOutput3 = fopen("output3.txt”,"w”);for(nTime=0;nTime<=36;nTime+)fsca

23、nf(fInput2,"%d",&nX0);/*读入角度值*/for (nCounter=0;nCounter<5;nCounter+)fscanf(fInput2,"%lf",&dSetanCounter);/*读入角速度值*/for (nCounter=0;nCounter<4;nCounter+)fscanf(fInput2,"%lf",&dOmiganCounter);/*建立高 斯方程 组矩阵,dSeta0=x1 (角度 我们草 稿的),dSeta1=x2,dSeta2=x3,dSeta3

24、=x5,dSeta4=x6dOmiga0 =w2, dOmiga1=w3, dOmiga2=w5, dOmiga3=w6*/a00 = - dLen2 * sin(dSeta1);a01 = dLen3 * sin(dSeta2);a02 = 0.;a03 = 0.;a10 = dLen2 * cos(dSeta1);a11 = - dLen3 * cos(dSeta2);a12 = 0.;a13 = 0.;a20 = - dLen0 * sin(ALPHA-(dSeta1)+dLen2 * sin(dSeta1);a21 = 0.;a22 = dLen5 * sin(dSeta3);a23

25、= -dLen6 * sin(dSeta4);a30 = dLen0 * cos(ALPHA-(dSeta1)+dLen2 * cos(dSeta1);a31 = 0.;a32 = dLen5 * cos(dSeta3);a33 = - dLen6 * cos(dSeta4);b0 = - ( - dLen2 * cos(dSeta1) * dOmiga0 * dOmiga0+ dLen3 * cos(dSeta2) * dOmiga1 * dOmiga1 ) + dLen1 *cos(dSeta0) * w1 * w1;b1 = - ( - dLen2 * sin(dSeta1) * dOm

26、iga0 * dOmiga0+ dLen3 * sin(dSeta2) * dOmiga1 * dOmiga1 ) + dLen1 *sin(dSeta0) * w1 * w1;b2 = -w1 * w1* dLen1*cos(dSeta0)-dOmiga0 *dOmiga0*(dLen2*cos(dSeta1)+dLen0 * cos(ALPHA-(dSeta1)+dOmiga3 *dOmiga3*dLen6 * cos(dSeta4)-dLen5*cos(dSeta3) * dOmiga2 * dOmiga2;b3 = w1 * w1* dLen1*sin(dSeta0)-dOmiga0

27、*dOmiga0*(dLen2*sin(dSeta1)-dLen0*sin(ALPHA-(dSeta1)-dOmiga3 *dOmiga3*dLen6 * sin(dSeta4)+ dLen5*sin(dSeta3) * dOmiga2 * dOmiga2;if (agaus(a,b,4)!=0) for (i=0;i<=3;i+)printf("a%d=%lfn",i,bi);fprintf(fOutput3,"%lf ",bi);Aex=-dLen2*sin(dSeta1)*b0+dLen0*sin(ALPHA-(dSeta1)*b0-dLen

28、1*cos(dSeta0)*w1*w1-dLen2*cos(dSeta1)*dOmiga0dOmiga0-dLen0*cos(ALPHA-(dSeta1)*dOmiga0 * dOmiga0;Aey=dLen2*cos(dSeta1)*b0+dLen0*cos(ALPHA-(dSeta1)*b0-dLen1*sin(dSeta0)*w1*w1-dLen2*sin(dSeta1)*dOmiga0dOmiga0+dLen0*sin(ALPHA-(dSeta1)*dOmiga0 * dOmiga0;printf("Aex=%lfnAey=%lf",Aex,Aey);fprintf

29、(fOutput3,"%lf %lf ",Aex,Aey);printf("nn");fprintf(fOutput3,"n"); 1 4平面六杆机构的运动分析15fclose(fInput2);fclose(fOutput3);getch();5. #include "stdlib.h"#include "math.h"#include "stdio.h"int dnetn(n,eps,t,h,x,k)int n,k;double eps,t,h,x; extern voi

30、d dnetnf();extern int agaus();int i,j,l;double am,z,beta,d,*y,*a,*b;y=malloc(n*sizeof(double);a=malloc(n*n*sizeof(double);b=malloc(n*sizeof(double);l=k; am=1.0+eps;while (am>=eps) dnetnf(x,b,n);am=0.0;for (i=0; i<=n-1; i+) z=fabs(bi);if (z>am) am=z;if (am>=eps) l=l-1;if (l=0) free(y); fr

31、ee(b); free(a);printf("failn"); return(0);for (j=0; j<=n-1; j+) z=xj; xj=xj+h;dnetnf(x,y,n);for (i=0; i<=n-1; i+) ai*n+j=yi;xj=z;if (agaus(a,b,n)=0) free(y); free(a); free(b); return(-1);beta=1.0;for (i=0; i<=n-1; i+) beta=beta-bi;if (fabs(beta)+1.0=1.0) free(y); free(a); free(b);

32、printf("failn"); return(-2);1 5平面六杆机构的运动分析1 7d=h/beta;for (i=0; i<=n-1; i+) xi=xi-d*bi; h=t*h;free(y); free(a); free(b);return(k-l);五. 计算结果? 1 (单位:度:)?2 (单位:度:)?3 (单位:度、,)? 5 (单位:度)?6 (单位:度036.7990569.57313122.4627792.665441032.7094766.00299106.4997167.798572029.2776164.0731797.1754452.

33、862793026.5973763.7310390.3834344.249194024.6359164.7551184.2478239.672665023.3010866.8646877.8411637.316076022.4901269.7900470.4814435.419577022.1129773.3007761.2722731.876318022.0990377.2093648.8508123.825399022.3963781.3648232.264598.5942310022.9684485.6444213.79708-12.3279311023.7903589.9462-1.8

34、8955-33.31912024.8456494.18335-12.74873-50.8843913026.1233198.28029-19.47863-64.721114027.61533102.17026-23.43679-75.5877215029.31424105.7939-25.76743-84.2467516031.21099109.09881-27.29596-91.2615217033.29288112.03937-28.59909-97.0319318035.54172114.57678-30.07522-101.8606819037.93229116.67878-31.99

35、02-106.0039620040.43114118.31896-34.50611-109.6995121042.99573119.4754-37.70212-113.1728422045.57385120.12878-41.59328-116.625323048.10309120.26007-46.14952-120.2108524050.51035119.84805-51.3162-124.0104525052.71117118.86702-57.03775-128.0136226054.60905117.28503-63.28435-132.1156127056.09499115.063

36、45-70.07877-136.1348628057.0483112.15863-77.51645-139.8518129057.33997108.52777-85.77334-143.0681630056.84147104.14138-95.10476-145.6934431055.4427999.00639-105.86689-147.8969432053.0835193.20271-118.69237-150.5043933049.7968986.93055-135.48887-156.6045834045.7547380.55028-164.06049-178.7216335041.2

37、812574.57477-207.28198-226.9752736036.7990569.57313-237.53723-267.33456? 1 (单位:度w2 (单位:rad/s )w3 (单位:rad/s )|w5 (单位:rad/s )w6(单位:rad/s )0-0.43443-0.43443-2.42454-2.8371910-0.37901-0.27611-1.50231-1.968520-0.30588-0.11091-0.91878-1.2061430-0.230840.0386-0.56502-0.5861540-0.163070.16142-0.32443-0.0690

38、150-0.105640.25595-0.129070.3848760-0.058060.325270.048060.803970-0.018540.373760.17951.16597800.01490.405460.116711.28627900.043970.4236-0.388620.799141000.070030.43063-1.16737-0.170181100.094080.42829-1.6884-0.946671200.11680.41789-1.86857-1.347151300.138610.40039-1.87297-1.529481400.159680.37661-

39、1.81572-1.626531500.179960.34725-1.74328-1.703731600.199180.31298-1.66885-1.789361700.216890.27449-1.5923-1.894341800.232460.23246-1.50865-2.020151900.24510.18751-1.41155-2.161372000.253960.14017-1.29477-2.306232100.258090.0908-1.15309-2.4372200.256490.03956-0.98329-2.531192300.24814-0.01365-0.78563

40、-2.564012400.23191-0.06918-0.56583-2.512122500.20665-0.12756-0.33625-2.358052600.17111-0.18948-0.11521-2.093781 7平面六杆机构的运动分析1 82700.12406-0.255570.0769-1.721942800.06444-0.326130.22384-1.25397290-0.00827-0.400580.32055-0.70581300-0.09331-0.476650.37885-0.09149310-0.18751-0.54910.43120.58577320-0.283

41、88-0.608370.527281.338330-0.37062-0.640050.622262.05413340-0.43232-0.62729-0.677430.7279350-0.45511-0.55802-3.06708-2.90494360-0.43443-0.43443-2.42454-2.83719? 1 (单位:度)a2a3a5a601.87731-1.41416-9.3572522.276910-0.5276-1.3131412.8394314.4391320-10.21122-16.13634-41.38351-111.46712300.322270.3023-2.243

42、07-1.31208400.710490.38945-2.223782.07264502.165745.80322-21.27313-59.0065460-0.144353.8797415.29502-4.92108702.030953.01559-66.66643-92.75689801.34149-0.79682-5.6969317.35997903.873711.2010994.506115.59534100-16.918128.13118-53.8692720.51404110-0.62813-1.177686.97249-2.444621200.977911.4819-1.98112

43、6.72186130-0.21204-0.7149-1.26222-4.04646140-1.6445-4.057139.66324.02261150-1.02752-1.887111.3850913.485481600.57409-0.7711137.87656-52.568711700.57409-0.7711137.87656-52.568711800.57409-0.7711137.87656-52.568711900.57409-0.7711137.87656-52.568712000.57409-0.7711137.87656-52.568712100.57409-0.771113

44、7.87656-52.568712200.57409-0.7711137.87656-52.568712300.57409-0.7711137.87656-52.568712400.57409-0.7711137.87656-52.568712500.57409-0.7711137.87656-52.568712600.57409-0.7711137.87656-52.568712700.57409-0.7711137.87656-52.568712800.57409-0.7711137.87656-52.568712900.57409-0.7711137.87656-52.568711 8半

45、向六杆机构的运动分析1 93000.57409-0.7711137.87656-52.568713100.57409-0.7711137.87656-52.568713200.57409-0.7711137.87656-52.568713300.57409-0.7711137.87656-52.568713400.57409-0.7711137.87656-52.568713500.57409-0.7711137.87656-52.568713600.57409-0.7711137.87656-52.56871XeYeVexVeyAexAey170.8016537.6482816.3554-3

46、6.18842173.19724187.86733172.7165631.863085.73079-29.47339-114.7416822.41059172.8899827.49921-3.42435-20.36538-715.62505-1365.89613171.63824.74528-10.59649-11.372780.5446125.093169.2948423.43323-15.9903-3.997-57.98263103.71014166.1371723.22697-19.990991.28259510.37845288.62216162.3797923.76584-22.90

47、2284.5912296.42715358.18851158.1954624.73635-24.904926.2981629.47122281.71398153.7335625.89561-26.09446.82301-0.16224192.37618149.1309227.07215-26.525166.55739569.8676129.35796144.516128.15849-26.241755.84156382.529942655.46328140.0093429.10177-25.296984.96127-44.20371-104.35613135.7202429.89438-23.

48、760814.149548.40659122.97291131.7444730.56486-21.722923.58769-47.86092-40.4638128.1604631.16891-19.290913.40551-237.39024-304.20274125.0266431.78027-16.584673.67982-159.52108-83.47344122.3800632.48145-13.728014.4343317.6055169.77782120.2365733.35457-10.8385.6415317.6055169.77782118.5930234.47284-8.013427.2277617.6055169.77782117.4314335.89317-5.323689.0817817.6055169.77782116.7249637.65056-2.79

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论