应用统计学两个总体的假设检验_第1页
应用统计学两个总体的假设检验_第2页
应用统计学两个总体的假设检验_第3页
应用统计学两个总体的假设检验_第4页
应用统计学两个总体的假设检验_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1本章教学目标本章教学目标l掌握运用 Excel 的“数据分析”及其统计函数功能求解两个总体的假设检验问题。 第第8章章 两个总体的假设检验两个总体的假设检验2本章主要内容:本章主要内容:8.1 案例介绍 8.2 两个独立正态总体均值的检验8.3 成对样本试验的均值检验8.4 两个正态总体方差的检验(F检验)8.5 两个总体比例的检验8.6 两个总体的假设检验小结 3【案例案例1】新工艺是否有效?新工艺是否有效? 某厂生产的一种钢丝的平均抗拉强度为 10560 (kg/cm2)。 现采用新工艺生产了一种新钢丝,随机抽取 10 根,测得抗拉强度为: 10512, 10623, 10668, 10

2、554, 10776 10707, 10557, 10581, 10666, 10670 求得新钢丝的平均抗拉强度为 10631.4(kg/cm2)。 是否就可以作出新钢丝的平均抗拉强度高于原钢丝,即新工艺有效的结论? 8.1 案例介绍案例介绍4 为分析甲、乙两种安眠药的效果,某医院将20个失眠病人分成两组,每组10人,两组病人分别服用甲、乙两种安眠药作对比试验。试验结果如下: 两种安眠药延长睡眠时间对比试验(小时)病人安眠药 1 2 3 4 5 6 7 8 9 10甲1.9 0.8 1.1 0.1 0.1 4.4 5.5 1.6 4.6 3.4乙0.7 1.6 0.2 1.2 0.1 3.4

3、 3.7 0.8 0.0 2.0(1)哪种安眠药的疗效好?(2)如果将试验方法改为对同一组10个病人,每人分别服用甲、乙两种安眠药作对比试验,试验结果仍如上表,此时结论如何? 案例案例1哪种安眠药的疗效好?哪种安眠药的疗效好?521 , XX设总体 X1 N ( 1, 12), X2N ( 2, 22),且 X1和 X2 相互独立。和 S12, S22 分别是它们的样本的均值和样本方差,样本容量分别为 n1和 n2。原假设为H0:1 = 2 8.2 两个独立正态总体均值的检验两个独立正态总体均值的检验6 可以证明,当 H0 为真时,统计量其中:,2) 1() 1(212222112nnSnSn

4、Sw2121/1/1nnSXXtw统计量统计量 备择假设备择假设 拒绝域拒绝域 2121/1/1nnSXXtw完全类似地,可以得到如下检验方法: t ( n1+n2-2 )称为合并方差。1. 12 = 22 = 2,212121)2(|212/nntt)2(21nntt)2(21nntt 但但 2 未知未知( t 检验检验 )7测得甲, 乙两种品牌轿车的首次故障里程数数据如下:甲品牌 X1:1200, 1400, 1580, 1700, 1900乙品牌 X2:1100, 1300, 1800, 1800, 2000, 2400设 X1和 X2 的方差相同。问在水平 0.05 下,(1)两种轿车

5、的平均首次故障里程数之间有无显著差异?(2)乙品牌轿车的平均首次故障里程是否比甲品牌有显著提高? 【案例案例2】轿车质量差异的检验轿车质量差异的检验8解:双边检验问题2) 1() 1(21222211nnSnSnSw2121/1/1|nnSxxtw,15561x, 17332xS12=269.62,99 .47156 .2694223956/15/1395|17331556|S22=471.9274. 012 = 22 = 2 未知, n1= 5,H0:1= 2H1:12。由所给数据,可求得 | t | = 0.74 -t(n1+n2-2) = -t0.05(9) = -1.833故乙品牌轿车

6、平均首次故障里程并不显著高于甲品牌。 显然,对给定的水平 ,若单边检验不显著,则双边检验肯定不显著。 但反之却不然,即若双边检验不显著,单边检验则有可能是显著的。 H1:1210 此时,可用 Excel 的【工具】“数据分析”“ t 检验:双样本异方差假设”检验 1222且都未知时两个正态总体的均值。2. 12 22 且且未知未知11 为分析甲、乙两种安眠药的效果,某医院将20个失眠病人分成两组,每组10人,两组病人分别服用甲、乙两种安眠药作对比试验。试验结果如下: 两种安眠药延长睡眠时间对比试验(小时)病人安眠药 1 2 3 4 5 6 7 8 9 10甲1.9 0.8 1.1 0.1 0.

7、1 4.4 5.5 1.6 4.6 3.4乙0.7 1.6 0.2 1.2 0.1 3.4 3.7 0.8 0.0 2.0(1)两种安眠药的疗效有无显著差异?(2)如果将试验方法改为对同一组10个病人,每人分别服用甲、乙两种安眠药作对比试验,试验结果仍如上表,此时两种安眠药的疗效间有无差异?【案例案例1】哪种安眠药的疗效好?哪种安眠药的疗效好?12 (1)设服用甲、乙两种安眠药的延长睡眠时间分别为X1, X2,,33. 21x,75. 02x18789. 19002. 2922wS10/110/18985. 175. 033.12|t 故不能拒绝H0,两种安眠药的疗效间无显著差异。 S22=1

8、.7892S12=2.0022,案例案例 1 解答解答8985. 18609. 11009. 2)18(025. 0 tX1N( 1, 2),X2N( 2, 2), n1 = n2 =10。 由试验方法知 X1, X2 独立。 H0:1=2,H1:12由表中所给数据,可求得:13,58. 1x10/23. 1058. 1|t故两种安眠药疗效间的差异是高度显著的! = 4.0621 8.3 成对样本试验成对样本试验 案例案例 1 (2)解答解答由于此时 X1, X2 为同一组病人分别服用两种安眠药的疗效,因此 X1, X2 不独立,属于成对样本试验成对样本试验。对于这类“成对样本试验成对样本试验

9、”的均值检验,应当化为单个正态总体的均值检验。方法如下:设 X=X1-X2 (服用甲、乙两种安眠药延长睡眠时间之差),则 XN ( , 2 )。H0: = 0,H1:0由表中所给数据,可求得S =1.23,n =10 t 0.005(9) = 3.2498 142221SSF 1. F 分布分布设 X 2(n1),Y 2(n2),且 X 和 Y 相互独立,则随机变量服从自由度为( n1, n2 )的 F 分布,记为F F ( n1, n2 )n1 为第一(分子的)自由度, n2 为第二(分母的)自由度。 8.4 两个正态总体方差的检验两个正态总体方差的检验15F 分布密度函数的图形分布密度函数

10、的图形xf (x)0n1=20, n2=10n1=20, n2=25n1=20, n2=100 16F 分布的右右侧 分位点 F ( n1, n2 ) F 分布的右侧 分位点为满足 P F F ( n1, n2 ) = 的数值 F (n1, n2)。F( n1, n2 )f (x)x0 F (n1, n2)有以下性质: F1- (n1, n2)=1/F(n2, n1) 利用上式可求得 F 分布表中未给出的 值的百分位点。如 F0.95(10, 15) = 1/F0.05(15, 10) 172. 两总体方差的检验 ( F 检验 )原假设为 H0:12=22。2221SSF 统计量统计量 备择假

11、设备择假设 拒绝域拒绝域 2221SSF 完全类似地,可以得到如下检验方法: F ( n1-1, n2-1 )当 H0为真时, 统计量222122212221) 1 , 1(212/nnFF) 1 , 1( 212/1nnFF或) 1 , 1(21nnFF) 1 , 1(211nnFF 【例2】在在 0.20下,检验下,检验【案例案例1】中两个正态总体的中两个正态总体的方差是否存在显著差异方差是否存在显著差异由于我们希望得到的结论是无显著差异,即原假设H0成立,为使检验结论有较高的可信度,重点应控制犯第二类错误(方差间存在显著差异但推断无显著差异)的概率。由两类错误的概率与 间的关系可知,此时不能取得太小。18198.5 大样本两个总体比例的检大样本两个总体比例的检验验设 P1, P2 分别是两个独立总体的总体比例,原假设为 H0: P1 = P2 设 p1, p2 分别是它们的样本比例,n1, n2 分别是它们的样本容量。则在大样本的条件下,2221

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论