广东省肇庆市四会黄田中学2021-2022学年高三数学文联考试题含解析_第1页
广东省肇庆市四会黄田中学2021-2022学年高三数学文联考试题含解析_第2页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、广东省肇庆市四会黄田中学2021-2022学年高三数学文联考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 将方程的正根从小到大地依次排列为,给出以下不等式:;其中,正确的判断是(     )a.      b.       c.      d. 参考答案:d2. 执行上图所示的程序框图,则输出的结果是(     )

2、a b        c  d 参考答案:c略3. (5分)已知集合a=x|x21,b=x|y=,则a?rb=(  )a (2,+) b (,1(2,+)c (,1)(2,+) d 1,02,+)参考答案:b【考点】: 交、并、补集的混合运算集合【分析】: 求出a中不等式的解集确定出a,求出b中x的范围确定出b,找出a与b补集的交集即可解:由a中不等式解得:x1或x1,即a=(,11,+),由b中y=,得到1log2x0,即log2x1=log22,解得:0x2,即b=(0,2,crb=(,0(2,+),

3、则acrb=(,1(2,+),故选:b【点评】: 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键4. 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()a5b5c4+id4i参考答案:a考点: 复数代数形式的乘除运算专题: 数系的扩充和复数分析: 根据复数的几何意义求出z2,即可得到结论解答: 解:z1=2+i对应的点的坐标为(2,1),复数z1,z2在复平面内的对应点关于虚轴对称,(2,1)关于虚轴对称的点的坐标为(2,1),则对应的复数,z2=2+i,则z1z2=(2+i)(2+i)=i24=14=5,故选:a点评: 本题主要考查复数的基本运

4、算,利用复数的几何意义是解决本题的关键,比较基础5. 已知双曲线的焦距为,抛物线与双曲线c的渐近线相切,则双曲线c的方程为(     )  a        b        c        d 参考答案:c略6. 若,则(   )abcd 参考答案:a由题得 故答案为:a 7. 函数的单调递增区间是a&#

5、160;                     bc                    d参考答案:b略8. 己知分别为双曲线的左顶点和右焦点,点在上,是等腰直角三角形,且  ,则的离心率为(  

6、;   )  a.    b.          c.       d.参考答案:c因为是等腰直角三角形,且,可设,则,即,所以,化简得,解得或(舍去),选c.9. 已知对任意实数,使且时,则时,有(    )a             &

7、#160;      b. c.                                           &

8、#160;     d.参考答案:b10. 已知全集u和集合a如图1所示,则=a.3       b.5,6      c.3,5,6       d.0,4,5,6,7,8参考答案:b略二、 填空题:本大题共7小题,每小题4分,共28分11. 如图,在中,则_.参考答案:4略12. 设函数是定义在r上的奇函数,当时,则当时,的解析式为    &#

9、160;                参考答案:13. 已知是抛物线的焦点,是抛物线上两点,线段的中点为,则的面积为           参考答案:214. 已知,为平面,m,n为直线,下列命题:若mn,n,则m;           若m,m,则

10、;若n,m, m,则mn; 若,m,n,则mn其中是真命题的有       (填写所有正确命题的序号)参考答案:15. 下图是一个几何体的三视图,根据图中数据可得该几何体的表面积是_;         参考答案:b略16. 已知实数x,y满足则的最大值是        参考答案:517. 设双曲线的方程为,其左,右焦点分别为f1,f2,若双曲线右支上一点p满足f1pf2=,=,则该双曲线的离心率为

11、          参考答案:2【考点】双曲线的简单性质【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程【分析】利用余弦定理,可得4c2=4a2+|pf1|?|pf2|根据spf1f2=3,可得|pf1|?|pf2|=12a2,即可求出双曲线的离心率【解答】解:由题意,f1(c,0),f2(c,0),p(x0,y0)在pf1f2中,由余弦定理,得:|f1f2|2=|pf1|2+|pf2|22|pf1|?|pf2|?cos=(|pf1|pf2|)2+|pf1|?|pf2|即4c2=4a2+|pf

12、1|?|pf2|又spf1f2=3|pf1|?|pf2|?sin=3|pf1|?|pf2|=12a24c2=4a2+12a2,即c=2ae=2故答案为:2【点评】此题是个中档题考查双曲线的定义及利用余弦定理解圆锥曲线的焦点三角形,解题过程注意整体代换的方法,简化计算三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本小题满分12分)已知函数,.(1) 求的值;    (2) 若,求. 参考答案:(1); 4分(2) 7分因为,所以, 9分所以, 11分所以.12分19. 定义域为的奇函数满足,且当时,.()求在上的解析式;()

13、若存在,满足,求实数的取值范围。参考答案:解:()当时, 由为上的奇函数,得,                         4分         又由奇函数得. ,    7分  .      &

14、#160;            8分(),              10分,. 若存在,满足,则  实数的取值范围为                    

15、   13分略20. 已知函数g(x)=alnx+x2+(1b)x()若g(x)在点(1,g(1)处的切线方程为8x2y3=0,求a,b的值;()若b=a+1,x1,x2是函数g(x)的两个极值点,求证:g(x1)+g(x2)+40参考答案:【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程【分析】()求出g(x)的导数,得到g(1),g(1),根据系数相等求出a,b的值即可;()求出x1,x2是方程x2ax+a=0的根,得到x1+x2=a,x1?x2=a,根据0,求出a4,于是g(x1)+g(x2)+4=alnaa2a+4,令h(x)=xlnxx2x+4,(x

16、4),根据函数的单调性求出h(x)h(4),从而证出结论【解答】解:()函数g(x)=alnx+x2+(1b)x,x0,g(x)=+x+(1b),g(1)=b,g(1)=ab+2,切线方程是:y+b=(ab+2)(x1),即:2(ab+2)x2y2a1=0,又切线方程为8x2y3=0,解得:a=1,b=1;()若b=a+1,则g(x)=alnx+x2ax,(x0),g(x)=+xa=,(x0),若x1,x2是函数g(x)的两个极值点,则x1,x2是方程x2ax+a=0的根,x1+x2=a,x1?x2=a,而=a24a0,解得:a4或a0,显然a4,g(x1)+g(x2)+4=alnx1+ax1+alnx2+ax2+4=alnaa2a+4,令h(x)=xlnxx2x+4,(x4),h(x)=lnxx,h(x)=0,h(x)在(4,+)递减,h(x)maxh(4)=ln440,h(x)在(4,)递减,h(x)h(4)=8(ln21)0,g(x1)+g(x2)+4021. 已知a,b是正实数,且, 证明:(1);(2)参考答案:(1)见解析;(2)见解析【分析】(1)利用基本不等式证明即可(2)利用综合法,通过重要不等式证明即可【详解】 是正实数,当且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论