自适应滤波原理_第1页
自适应滤波原理_第2页
自适应滤波原理_第3页
自适应滤波原理_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、白适应滤波器的算法研究及DSP仿真实现i自适应滤波器简介自适应滤波器属于现代滤波器的范畴,自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波 的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。在没有任何关于信 号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适 应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。所谓自适应滤波,就是利用前一时刻已获得的滤波器参 数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。 自适应滤波器实质

2、上就是一种能调节其自身传输特性以达到最优化的维纳滤波器。2自适应滤波原理自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一 是滤波器结构,二是调整滤波器系数的自适应算法。自适应滤波器的结构采用FIR或IIR结构均可,由于IIR滤波器存在稳定性问题,因此一般采用 FIR滤波器作为自适应滤波器的结构。图1给出了自适应滤波器的一般结构。图1为自适应滤波器结构的一般形式,图中x(n)为输入信号,通过参数可调的数字滤波器后产生输出信号 y(n),将输 出信号y(n)与标准信号(或者为期望信号)d(n)进行比较,得到误差信号e(n)。e(n)和x(n)通

3、过自适应算法对滤波器的参 数进行调整,调整的目的使得误差信号 e(n)最小。其中:x(n)为自适应滤波器的输入;w(n)为自适应滤波器的冲激响应:w(n)=(w(O) , w(1),w(N-1) ; y(n)为自适应滤波器的冲激响应tw(n) = 3(0),御,顽N一1) ;y(n)为自适应滤波器的输出ty(n) x(n) * w(n)DNT= W1 (rt)X(n)=,叫 i) MG3自适应滤波算法自适应滤波器除了包括一个按照某种结构设计的滤波器,还有一套自适应的算法。自适应算法是根据某种判断来设计的。自适应滤波器的算法主要是以各种判据条件作为推算基础的。通常有两种判据条件:最小均方误差判据

4、和最小二乘 法判据。LMS算法是以最小均方误差为判据的最典型的算法,也是应用最广泛的一种算法。最小均方误差(Least Mean Square , LMS)算法是一种易于实现、性能稳健、应用广泛的算法。所有的滤波器系数调 整算法都是设法使y(n)接近d(n),所不同的只是对于这种接近的评价标准不同。 LMS算法的目标是通过调整系数,使 输出误差序列e(n)=d(n)-y(n)的均方值最小化,并且根据这个判据来修改权系数,该算法因此而得名。误差序列的均方 值又叫 均方误差”(Mean Sqluare Error, MSE)。理想信号d(n)与滤波器输出y(n)之差e(n)的期望值最小,并且根据这

5、个判据来修改权系数 wi(n)。由此产生的算法称 为LMS。均方误差£表示为:e = EW 3) = E(d3) 对于横向结构的滤波器,代入 y(n)的表达式:其中:R=EX(n)XT(n)为NX N的自相关矩阵,它是输入信号采样值间的相关性矩阵。P=Ed(n)X(n)为NX 1互相关矢量,代表理想信号d(n)与输入矢量的相关性。在均方误差 £达到最小时,得到最佳权系数它应满足下式:这是一个线形方程组,如果 R矩阵为满秩的,R-1存在,可得到权系数的最佳值满足:W*=R-1p。用完整的矩阵表示为: Wo "-豆(0)( N 1 )'-1W|*00(0)(N

6、-2) i A3V «尊 ,*叫 N-l) Q(N-l)心(N 2)电(0)_-吼(0)-勤/I 二显然6 x(m)=Ex(n)x(n -m)为x(n)的自相关值,6 xd(R)=Ex(n)d(n 一 k)为x(n)与d(n)互相关值。在有些应用中, 把输入信号的采样值分成相同的一段(每段称为一帧),再求出R, P的估计值得到每帧的最佳权系数。这种方法称为块 对块自适应算法。如语音信号的线性预测编码 LPC就是把语音信号分成帧进行处理的。R, P的计算,要求出期望值E, 在现实运算中不容易实现,为此可通过下式进行估计:击新 =p r工顷一i)d顷| m i)K| m 盆 L I 聊

7、IT击上= V?r VJ 工'(可 | m | ')K| m | 勺用以上方法获得最佳 W*的运算量很大,对于一些在线或实时应用的场合,无法满足其时间要求。大多数场合使用迭 代算法,对每次采样值就求出较佳权系数,称为采样值对采样值迭代算法。迭代算法可以避免复杂的R-1和P的运算,又能实时求得近似解,因而切实可行。LMS算法是以最快下降法为原则的迭代算法,即 W(n+1)矢量是W(n)矢量按均 方误差性能平面的负斜率大小调节相应一个增量: W(n+1)=W(n)-点(n),这个是由系统稳定性和迭代运算收敛速度决定的自适应步长。V (n)为n次迭代的梯度。对于LMS算法 (n)为下

8、式Ee2(n)的斜率:")=哮等=-2皿(心(小由上式产生了求解最佳权系数 W*的两种方法,一种是最陡梯度法。其思路为:设计初始权系数 W(0),用 W(n+1)=W(n) (1V(n)迭代公式计算,到 W(n+1)与W(n)误差小于规定范围。其中 (n)计算可用估计值表达式:上式K取值应足够大。如果用瞬时一 2e(n)X(n)来代替上面对-2Ee(n)X(n)的估计运算,就产生了另一种算法一一随 机梯度法,即 Widrow-Hoft的LMS算法。此时迭代公式为:W(n+1)=W(n)+2ue(n)X(n)以后讨论的LMS算法都是基于 WidrOW-Hoff的LMS算法。上式的迭代公

9、式假定滤波器结构为横向结构。对于对称横向型结构也可推出类似的迭代公式:W(n+1)=W(n)+2ue(n)X(n)+X(n 一 N+1)4自适应滤波算法的理论仿真使用Matlab编程,采用自适应滤波器技术实现信噪分离,也就是去噪。程序如下:lear all;elf;signal - cos(2*pi*0t 055 *0:1000-lJ); %产生信号 noise= randn( 1,1000);nfilt=firl(lh0.4)jfnoise=filter(nfilttl, noise);d=signal. ' + fnoise;wO = Mill. r 一0. 01;mu = 0+

10、05;initse( w0,mu);%产生噪声%11阶低通FIR滤波器%相关噪声数据%信号和噪声叠加%设置初始化滤波器系数%设置算法的步长% adaptse函数的初始化参数y,e,s = adapt se( noise;plot( 0 ; 199, sign讪(L 200),09 9, e( 1: 200) s用 3 N4riLhib 仿 A- 1*1|±) 4 孑柬宜书和侦机喙/*:如的榆.、忸号输出愣¥程序运行的结果如图3所示。通过CCS软件环境,把滤波程序烧录到 DSP芯片中,在CCS DSK C5000环境下输出仿真结果:输入信号为 余弦信号和随机噪声的叠加。程序正确运行后,观察运行结果,得出如图4,图5所示的仿真图。5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论