PetrophysicalAnalysisofFluidSubstitutioninGasBearing在气体轴承替代流体物性分析PPT课件_第1页
PetrophysicalAnalysisofFluidSubstitutioninGasBearing在气体轴承替代流体物性分析PPT课件_第2页
PetrophysicalAnalysisofFluidSubstitutioninGasBearing在气体轴承替代流体物性分析PPT课件_第3页
PetrophysicalAnalysisofFluidSubstitutioninGasBearing在气体轴承替代流体物性分析PPT课件_第4页
PetrophysicalAnalysisofFluidSubstitutioninGasBearing在气体轴承替代流体物性分析PPT课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Benefits Seismic Reliable compressional and shear curves even if no acoustic data exists. Quantify velocity slowing due to presence of gas. Full spectrum of fluid substitution analysis. Reliable mechanical properties, Vp/Vs ratios. Reliable synthetics. Does not involve neural network or empirical co

2、rrelations.第1页/共27页Benefits Petrophysics Verifies consistency of petrophysical model. Ability to create reconstructed porosity logs using deterministic approaches.第2页/共27页Benefits Engineering Reliable mechanical property profiles for drilling and stimulation design. Does not rely on empirical correl

3、ations, or neural network curve generation, for mechanical properties.第3页/共27页Introduction A critical link between petrophysics and seismic interpretation is the influence of fluid content on acoustic and density properties. Presented are two techniques which rigorously solve compressional and shear

4、 acoustic responses in the entire range of rock types, and assuming different fluid contents.第4页/共27页Gassmann Equation inShaley Formation I The Gassmann equation accounts for the slowing of acoustic compressional energy in the formation in the presence of gas. There is no standard petrophysical anal

5、ysis that accounts for the Gassmann response and incorporates the effect in acoustic equations (e.g. Wyllie Time-Series). Terms in the Gassmann equation:M=Elastic modulus of the porous fluid filled rockMerf=Elastic modulus of the empty rock frameBerf=Bulk modulus of the empty rock frameBsolid=Bulk m

6、odulus of the rock matrix and shaleBfl=Bulk modulus of the fluid in pores and in clay porosityFT=Total PorosityrB=Bulk density of the rock fluid and shale combinationVp=Compressional wave velocity第5页/共27页Gassmann Equation inShaley Formation II In shaley formation, adjustments need to be made to seve

7、ral of the Gassmann equation terms, including porosity and bulk modulus of the solid components. This allows a rigorous solution to Gassmann through the full range of shaley formations. Estimates of shear acoustic response are made using a Krief model analogy.第6页/共27页Wyllie Time Series Equation In t

8、he approach presented here, we have solved the Gassmann equation in petrophysical terms, and defined a gas term for the Wyllie Time-Series equation that rigorously accounts for gas. Original Time-Series equation:flemaetttFF1t=Travel time = 1/Vtma=Travel time in matrixtfl=Travel time in fluidMatrixCo

9、ntributionFluidContribution第7页/共27页Linking Gassmann to Wyllie Calculate t values from Gassmann using fluid substitution Liquid filled i.e. Gas saturation Sg=0 Gas filled assuming remote (far from wellbore) gas Sg Gas filled assuming a constant Sg of 80% From t values, calculate effective fluid trave

10、l times (tfl) Knowing mix of water and gas, determine effective travel time of gas (tgas) Relate t values to gas saturation, bulk volume gas第8页/共27页Gassmann Sg vs. Ratio of Dtgas to DtwetColor coding refers to porosity bins第9页/共27页Gassmann Bulk Volume Gas vs. Ratio Dtgas to DtwetColor coding refers

11、to porosity bins第10页/共27页Gassmann Bulk Volume Gas vs. DtgasC1Hyperbola = C3C2第11页/共27页Adding a Gas Term to Wyllie Equation Gas term involves C1, C2 and C3 (constants) Equation reduces to traditional Wyllie equation when Sg=0 If gas is present, but has not been determined from other logs, the acousti

12、c cannot be used to determine reliable porosity values.maemawaterwettGas TermttS F FGasContributionMatrixContributionWaterContribution第12页/共27页Krief Equation Part I Krief has developed a model that is analogous to Gassmann, but also extends interpretations into the shear realm. We have similarly ada

13、pted these equations to petrophysics.Vp=Compressional wave velocityVS=Shear wave velocityrB=Bulk density of the rock fluids and matrix and shalem=Shear modulusK=Elastic modulus of the shaley porous fluid filled rockKS=Elastic modulus of the shaley formationKf=Elastic modulus of the fluid in poresbb=

14、Biot compressibility constantMb=Biot coefficientFT=Total Porosity第13页/共27页Krief Equation Part II The Krief analysis gives significantly different results from Gassmann, in fast velocity systems (less change in velocity in the presence of gas as compared with Gassmann). In slow velocity systems (high

15、 porosity, unconsolidated rocks), the two models give closely comparable results.第14页/共27页Examples Slow Rocks Gassmann DTP Krief DTP Krief DTP & DTS Fast Rocks Gassmann DTP Krief DTP Carbonates Gassmann DTP Krief DTP Fast Rocks Gassmann DTP & DTS Krief DTP & DTSIn all of these examples,

16、the pseudo acoustic logs are derived from a reservoir model of porosity, matrix, clay and fluids.There is no information from existing acoustic logs in these calculations.On all plots, porosity scale is 0 to 40%, increasing right to left.第15页/共27页Slow Rocks Gassmann DTPCompressional showssignificant

17、slowing due to gas第16页/共27页Slow Rocks Krief DTPCompressional showssignificantslowing due to gas第17页/共27页Slow Rocks Krief DTP & DTSCompressional showsvery good comparisonRatio and Shearshows fair togood comparison第18页/共27页Fast Rocks Gassmann DTPActual compressionalmeanders betweenwet and remoteNo

18、ticeableslowing due to gas第19页/共27页Fast Rocks Krief DTPActual compressionalsuperimposes on both wet andremoteNegligibleslowing due to gas第20页/共27页Carbonates Gassmann DTPCompressionalshows slightslowing due to gas第21页/共27页Carbonates Krief DTPCompressional showsnegligibleslowing due to gas第22页/共27页Fas

19、t Rocks Gassmann DTP/DTSGood comparison with actual ShearRatio showsslight slowingdue to gas第23页/共27页Fast Rocks Krief DTP/DTSGood comparison with actual ShearRatio showsnegligibleslowing due to gas第24页/共27页Conclusions Part I Pseudo acoustic logs (both compressional and shear) can be created using an

20、y combination of water, oil and gas, using either Gassmanns or Kriefs equations for clean and the full range of shaley formations. Comparison with actual acoustic log will show whether or not the acoustic log “sees” gas or not gives information on invasion profile. Pseudo acoustic logs can be created even if no source acoustic log is available. Data from either model can

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论