



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019-2020年高一数学根式第一课时第二章课时安排7课时课题§ 2.5.1 根式教学目标(一)教学知识点1. n次方根定义.2根式概念.(二)能力训练要求1. 理解n次方根定义.2. 理解根式的概念.3. 正确运用根式运算性质化简、求值.4. 了解分类讨论思想在解题中的应用.(三)德育渗透目标1. 掌握由特殊到一般的归纳方法.2. 培养学生认识、接受新事物的能力.教学重点根式概念.教学难点根式概念的理解.教学方法学导式本节是指数与指数函数的入门课,概念性较强,为突破根式概念理解这一教学难点,关键在于使学生理解n次方根定义,故结合学生在初中已经熟悉的平方根、立方根的概念,由特殊逐渐
2、地过渡到一般的n次方根定义,使学生易于接受,并且引导学生主动参与了教学活动在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解.教具准备幻灯片四张第一张:整数指数幕概念、运算性质(记作§ 2.5.1 A)第二张:n次方根举例(记作§ 2.5.1 B)第三张:根式性质推导(记作§ 2.5.1 C)第四张:本节例题(记作§ 2.5.1 D)教学过程I .复习回顾师在初中,我们已经学习了整数指数幕的概念及其性质.现在,我们一起来看屏幕.(打出幻灯片§ 2.5.1 A)整数指数幕概念整数指数幕
3、运算性质an =(n N*)(1) aman= am+n (m, n Z)0 1 a = 1(2) (am) n= am'n ( m, n Z)-n a =(3) (ab) n= an bn (n Z)师因为am*an可看作am a n,所以am*an= amn可以归入性质 ;又因为()n可看作anb-n,所以()"=可以归入性质(3).我们复习这部分内容是为下一节学习分数指数幕打基础师另外,我们在初中还学习了平方根、立方根这两个概念.(打出幻灯片§ 2.5.1 B)22 = 4(-2) 2= 42,- 2叫4的平方根23 = 82叫8的立方根(-2) 3=- 82
4、叫一8的立方根25 = 322叫32的5次方根2n = a2叫a的n次方根师我们一起来看,若 22= 4,贝U 2叫4的平方根;若23= 8, 2叫8的立方根;若25= 32,则2叫32的5次方根,类似地,若 2n= a,贝U 2叫a的n次方根.这样,我们可以给出 n次方根的定义.n .讲授新课1. n次方根的定义(板书)若xn = a (n> 1且n N* ),则x叫a的n次方根.师n次方根的定义给出了,我们考虑这样一个问题,x如何用a表示呢?(提示学生看幻灯片§ 2.5.1 B ,并叫学生回答).生正数的平方根有两个且互为相反数,负数没有平方根;正数的立方根是正数,负数的立
5、方根是负数师跟平方根一样,偶次方根有下列性质:在实数范围内,正数的偶次方根有两个且互为相反数,负数没有偶次方根;跟立方根一样,奇次方根有下 列性质:在实数范围内,正数的奇次方根是正数,负数的奇次方根是负数这样,我们便可得到 n次方根的性质2. n次方根的性质(板书)x=( k N*)其中叫根式,n叫根指数,a叫被开方数.师请大家注意,根式是 n次方根的一种表示形式,并且,由n次方根的定义,我们可以得到根式的运算性质.3. 根式的运算性质(板书) ()n= a 二师关于性质的推导,我们一起来看屏幕:(打出幻灯片§ 2.5.1 C)性质推导过程:当n为奇数时,x=,由x = a得()=a
6、;当n为偶数时,x=±,由xn= a得()n= a;综上所述,可知:()n = A.性质推导过程:当n为奇数时,由n次方根定义得:a=;当n为偶数时,由n次方根疋义得:a =±则丨 a | = |±| =综上所述:=师性质有一定变化,即对于 n应分奇数与偶数两种情况来讨论,大家应重点掌握,接下来,我们通过例题来熟悉根式运算性质的应用.(打出幻灯片§ 2.5.1 D)例1求下列各式的值(2)(3)( 4) (a> b)解:=-8(2) =1 - 10 I(3) =| 3 n I = n 3(4) =| a b |= a b (a> b)师根指数
7、n为奇数的题目较易处理,而例题侧重于根指数n为偶数的运算,说明此类题目容易出错,应引起大家的注意为使大家进一步熟悉根式性质的运用,我们来做练习题川课堂练习(1)(2)(4)解:(1) = = 22=(3)= 9=II=:(2)二-2 2 .3 (.3)2 = ( 2 - .3)2IV 课时小结师通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题V 课后作业(一)求下列各式的值:(1) (2)(3)(4)解:(1)= = 3(2) =| n 4 | = 4 n3 ,=| a |=|x13 - x1 Xl_x 3,1 <x <3,x : 1 或 x 3(二) 1预习内容:课本 P71P72.2预习提纲:(1) 根式与分数指数幕有何关系?(2) 整数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 19785-4:2025 EN Information technology - Common Biometric Exchange Formats Framework - Part 4: Security block format specifications
- 【正版授权】 ISO 20188:2025 EN Space systems - Product assurance requirements for commercial satellites
- 【正版授权】 ISO 80000-12:2019/AMD1:2025 EN Amendment 1 - Quantities and units - Part 12: Condensed matter physics
- 【正版授权】 ISO 18997:2025 EN Water reuse in urban areas - Guidelines for urban reclaimed water for landscaping uses
- 【正版授权】 ISO 16610-31:2025 EN Geometrical product specifications (GPS) - Filtration - Part 31: Robust profile filters: Gaussian regression filters
- 校外小饭桌安全知识培训课件
- 校园超市消防知识培训总结课件
- 销售会计试题及答案
- 斜视护理试题及答案
- 北京预测培训基础知识课件
- 2025年呼伦贝尔市生态环境局所属事业单位引进人才(2人)模拟试卷附答案详解(综合卷)
- 2025年中国建设银行招聘考试(综合知识)历年参考题库含答案详解(5套)
- BMS基础知识培训课件
- 承接战略贴近业务人力资源规划设计到应用
- 消防外管网维修合同范本
- 飞行员心理健康培训课件
- 高一班第一次家长会课件
- 轻度抑郁发作个案护理
- 煤矿井下巷道三维建模技术研究与应用
- 中医康复技术专业教学标准(中等职业教育)2025修订
- 2026版步步高大一轮高考数学复习讲义第三章 进阶篇 不等式恒(能)成立问题 进阶2 参数半分离与主元变换含答案
评论
0/150
提交评论