讲解求解共点力平衡问题的八种方法_第1页
讲解求解共点力平衡问题的八种方法_第2页
讲解求解共点力平衡问题的八种方法_第3页
讲解求解共点力平衡问题的八种方法_第4页
讲解求解共点力平衡问题的八种方法_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、求解共点力平衡问题的八种方法一、分解法一个物体在三个共点力作用下处于平衡状态时,将其中任意一个力沿其他两个力的反方向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题,则每个方向上的一对力大小相等。、合成法对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡, 把三力平衡转化为二力平衡问题。例1如图1所示,重物的质量为 m,轻细绳AO和BO的A端、B端是固定的,平衡时AO是水平的,BO与水平面的夹角为 0, AO的拉力Fi和BO的拉力F2的大小是()A . Fi = mgcos 0B. Fi = mgcot 0C. F2= mgsin 0D. F2= mg/sin 0

2、解析解法一(分解法)用效果分解法求解。F2共产生两个效果:一个是水平方向沿ArO拉绳子AO,另一个是拉着竖直方向的绳子。如图 2甲所示,将F2分解在这两个方向上,结合力的平衡等知识解得 F1= F2' = mgcot 0, F2= 尸 显然, sin 0 sin 0也可以按mg(或Fi)产生的效果分解mg(或Fi)来求解此题。甲乙解法二(合成法)由平行四边形定则,作出Fi、F2的合力Fi2,如图乙所示。又考虑到Fi2 = mg,解直角三角形得Fi= mgcot 0, F?= mg/sin。,故选项 B、D正确。答案BD三、正交分解法物体受到三个或三个以上力的作用处于平衡状态时,常用正交

3、分解法列平衡方程求解:Fx合=0, Fy合=0。为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。例2如图3所示,用与水平成 。角的推力F作用在物块上,随着 。逐渐减小直到水 平的过程中,物块始终沿水平面做匀速直线运动。关于物块受到的外力, 下列判断正确的是A .推力F先增大后减小B. 推力F 一直减小C. 物块受到的摩擦力先减小后增大D .物块受到的摩擦力一直不变解析对物体受力分析,建立如图 4所示的坐标系。y图4由平衡条件得Fcos。一 Ff= 0Fn (mg + Fsin 0)= 0又 Ff=N联立可得F =gcos 0饵in 0可见,当。减小时,F一直减小,故选项B正确。答案

4、B四、整体法和隔离法若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样 涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法 相结合的方法。例3(多选)如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为 m的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是()A. 直角劈对地面的压力等于 (M + m)gB. 直角劈对地面的压力大于 (M + m)gC. 地面对直角劈没有摩擦力D. 地面对直角劈有向左的摩擦力解析方法一:隔离法先隔

5、离物体,物体受重力 mg、斜面对它的支持力 Fn、沿斜面向上的摩擦力 Ff,因物体 沿斜面匀速下滑,所以支持力Fn和沿斜面向上的摩擦力 Ff可根据平衡条件求出。再隔离直角劈,直角劈受竖直向下的重力 Mg、地面对它竖直向上的支持力Fn地,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力Fn '和沿斜面向下的摩擦力Ff',直角劈相对地面有没有运动趋势,关键看 F/和Fn '在水平方向上的分量是否相等,若二者相等,则直角劈 相对地面无运动趋势, 若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定。对物体进行受力分析, 建立坐标系如图6甲

6、所示,因物体沿斜面匀速下滑,由平衡条件得:支持力Fn = mgcos。,摩擦力Ff= mgsin &图6对直角劈进行受力分析,建立坐标系如图乙所示,由牛顿第三定律得Fn = Fn' , Ff =Ff',在水平方向上,压力Fn'的水平分量Fn ' sin 0= mgcos 0sin 0,摩擦力Ff'的水平分 量Ff' cos 0= mgsin 0cos。,可见Ff' cos X Fn' sin。,所以直角劈相对地面没有运动趋势 , 所以地面对直角劈没有摩擦力 。在竖直方向上,直角劈受力平衡,由平衡条件得:Fn地=Ff'

7、; sin。+ Fn ' cos。+ Mg =mg+ Mg。方法二:整体法直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等、方向相反。而地面对直角劈的支持力、 地面对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个问题,可以以整体为研究对象。整体在竖直方向上受到重力和支持力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡状态,所以竖直方向上地面对直角 劈的支持力等于物体和直角劈整体的重力。水平方向上地面若对直角劈有摩擦力,无论摩擦力的方向向左还是向右, 水平方向上整体都不能处于平衡状态,所以整体在水平方向上不受摩擦力,整体受力如图丙所示。答案AC

8、五、三力汇交原理物体受三个共面非平行力作用而平衡时,这三个力必为共点力。例4 一根长2 m,重为G的不均匀直棒 AB,用两根细绳水平悬挂在大花板上,当棒平衡时细绳与水平面的夹角如图7所示,则关于直棒重心C的位置下列说法正确的是图7A .距离B端0.5 m处B. 距离B端0.75 m处C. 距离B端¥ m处3D. 距离B喘专m处解析当一个物体受三个力作用而处于平衡状态,如果其中两个力的作用线相交于一点,则第三个力的作用线必通过前两个力作用线的相交点,把OiA和O2B延长相交于。点,1则重心C 一正在过。点的竖直线上,如图 8所小。由几何知识可知:BO = AB = 1 m, BC1=2

9、BO = 0.5 m,故重心应在距 B骊0.5 m处。A项正确。Wyot河J由Gl图8答案A六、正弦定理法9所示。三力平衡时,三力合力为零。三个力可构成一个封闭三角形,如图图9Fl F2 F3则有:-=。sin a sin 3 sin 丫例5 一盏电灯重力为 G,悬于大花板上 A点,在电线。处系一细线OB,使电线OA与竖直方向的夹角为3= 30°,如图10所示。现保持 6角不变,缓慢调整 OB方向至OB线上拉力最小为止,此时 OB与水平方向的夹角 a等于多少?最小拉力是多少?图10解析对电灯受力分析如图 11所示,据三力平衡特点可知:OA、OB对。点的作用力Ta、Tb的合力T与G等大

10、反向,即T= Gm图11在 OTbT 中,ZTOTb= 90 - a又 Z OTTb=Z toa = 3,故 Z OTbT= 180 (90 - a) 3= 90 °+ a 3由正弦定理得兰=*sin 3 sin(90 + 或3)联立解得Tb =国' °cos (X 3)因6不变,故当a=片30时,Tb最小,且Tb= Gsin 6= G/2。G答案30-七、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中, 可能有力三角形与题设图中的几何三角形相似,进而得到力的三角形与几何三角形对应边成比例,根据比值便可计

11、算出未知力的大小与方向。例6如图12所示是固定在水平面上的光滑半球,球心O'的正上方固定一小定滑轮,B点。细线一端拴一小球 A,另一端绕过定滑轮。今将小球从如图所示的初位置缓慢地拉至在小球到达B点前的过程中,半球对小球的支持力Fn及细线的拉力F1的大小变化情况是图12A . Fn变大,F变小B . Fn变小,Fi变大C. Fn不变,F1变小D . Fn变大,Fi变大解析由于三力Fi、Fn与G首尾相接构成的矢量三角形与几何三角形AOO '相似,如图13所示,图13o'一一OA所以 F1=GOO-'由题意知当小球缓慢上移时 ,OA减小,OO'不变,R不变,故

12、F1减小,Fn不变,故C对。答案C八、图解法1. 图解法对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下力的矢 量图(画在同一个图中),然后根据有向线段(表示力)的长度变化情况判断各个力的变化情况。2. 图解法主要用来解决三力作用下的动态平衡问题所谓动态平衡问题就是通过控制某一物理量,使物体的状态发生缓慢变化。从宏观上看, 物体是运动的,但从微观上理解,物体是平衡的,即任一时刻物体均处于平衡状态。3. 利用图解法解题的条件是(1)物体受三个力的作用而处于平衡状态。(2) 一个力不变,另一个力的方向不变或大小不变,第三个力的大小、方向均变化。例7如图14所示,一个重为 G的匀质球放在光滑斜面上,斜面倾角为a,在斜面上6缓慢增大,有一光滑的不计厚度的木板挡住球,使之处于静止状态,今使板与斜面的夹角 问:在此过程中,球对挡板和球对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论