平行四边形的性质及判定典型题精选_第1页
平行四边形的性质及判定典型题精选_第2页
平行四边形的性质及判定典型题精选_第3页
平行四边形的性质及判定典型题精选_第4页
平行四边形的性质及判定典型题精选_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平行四边形的性质及判定第15页共17页知识点睛1 平行四边形的性质平行四边形的边:平行四边形的对边平行且对边相等. 平行四边形的角:平行四边形的对角相等,邻角互补. 平行四边形的对角线:平行四边形的对角线互相平分. 平行四边形的对称性:平行四边形是中心对称图形. 平行四边形的周长:一组邻边之和的2倍.平行四边形的面积:底乘以高.2.平行四边形的判定两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形. 两条对角线互相平分的四边形是平行四边形.两组对角分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形.例题精讲、平行四边形的性质【例2】如图,点E,F是平行

2、四边形ABCD对角线上的两点,且BE =DF,那么AF和CE相等吗?请说【例1】如图,四边形 ABCD为平行四边形,即 AB / CD , AD / BC .通过证明三角形全等来说明: AB CD , AD =BC .(对边相等)A0二CO , B0二DO .(对角线互相平分)明理由A【例3】如图所示,已知四边形ABC D,从AB II DC :AB =DC :AD II BC ; (4) AD =BC ;NA =C ;6) ZB =ND中取两个条件加以组合,能推出四边形 ABCD是平行四边形的有哪几 种情形?请写出具体组合。【例4】如图,在平行四边形 平行四边形AB CD中,E F II B

3、 C , G H IIAB,EF 与 GH相交于点【例引如图,在平行四边形EC的长度分别为(A. 2 和 3 B .ABCD) 3和2中,O,图中共有AD =5 , AB =3 , AE平分£ BAD交BC边于点E,则线段BE ,C. 4 和 1【例6】 以三角形的三个顶点作平行四边形,最多可以作()A . 2个B . 3个C. 4个D . 5个【例7】 如图,平行四边形 ABCD中,AB _AC .对角线AC , BD相交于点0,将直线AC绕点0顺时 针旋转,分别交 BC , AD于点E , F . 证明:当旋转角为90时,四边形ABEF是平行四边形;试说明在旋转过程中,线段 AF

4、与EC总保持相等.【例8】 在平行四边形ABCD中,点Ai、A?、A3、A。和Ci、C2、C3、C4分别为AB和CD的五等分点,点Bi、B2和Di、2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则平行四边形 ABCD 面积为()A A i幻如R【例9】如图,在平行四边 ABCD中,AC 面积为()A 3B 6C. 12BD为对角线,BC =6 , BC边上的高为4,则阴影部分的D . 2435A. 2B .C.D .1553【例10】现有如图2的铁片,其形状是一个大的平行四边形在一角剪去一个小的平行四边形,工人师傅想 用一条直线将其分割成面积相等的两部分,请你帮助师傅设计

5、三种不同的分割方案.【例11】如图3,一个平行四边形被分成面积为S1、S2、S3、S4四个小平行四边形,当 CD沿AB自左向右在平行四边形内平行滑动时. S1S4与S2S3的大小关系为 已知点C与点A、B不重合时,图中共有 个平行四边形,A【例12】如图1 , °! ,。2 ,。3 ,。4为四个等圆的圆心, A , B , C , D为切点,请你在图中画出一条直 线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图2,°!,°2,°3,°4,°5为五个等圆的圆心,A,B,c, D,E为切点,请你在图中画出一条直线,

6、将这五个圆 分成面积相等的两部分,并说明这条直线经过的两个点是 .C°4°3DBA°2°5°1【例13】如图,E, F是平行四边形ABCD的对角线AC上的两点,AE=CF. 求证:(1). -AD F 也. 'CBE ;(2) EB / D F .【例14】如图,已知:在平行四边形 ABCD中,.BC D的平分线CE交边AD于E , ABC的平分线BG交CE于F,交AD于G .求证:AE =DG .【例15】已知:如图,平行四边形ABCD内有一点E满足ED _ AD于点D,/ EBC - . EDC,/ ECB =45 请找出与BE相等

7、的一条线段,并给予证明.【例16】如图,EF是平行四边形 ABCD对角线AC上两点,BE II DF ,求证:AF =CE .【例17】如图,平行四边形 AB CD 中,AE_BD于E, CF_BD于F .求证:AE =CF .【例18】如图,在平行四边形ABCD中,连接对角线BD,过A,C两点分别作AE _ BD ,CF_BD,E,F为垂足,求证:四边形 AECF是平行四边形【例19】如图,平行四边形ABCD中,E是BC的中点,DE 证:S .A* =S efc .AB的延长线交于点F ,连接AE、CF .求【例20】如图,已知等边三角形的边长为 1 0 , P是.ABC内一点,PD / A

8、C , PE II A B , P F / BC,点D,E , F 分另IJ在 AB , BC , AC 上,贝PD PE PF =A【例21】如图1,在平行四边ABCD中,.A =120,则.D二AA图1【例22】如图2,在平行四边形 ABCD中,DB=DC, / A =65 , CE _ BD于E,则.BCE 口D图2【例23】已知四边形的四条边长分别是a , b,c,d ,其中a,b为对边,并且满足a 2 b2 - c2 d2 =2ab - 2cd则这个四边形是()A 任意四边形B.平行四边形C.对角线相等的四边形D.对角线垂直的四边形【例24】(2009东营)如图3,在平行四边ABCD

9、中,已知AD =8 cm ,A B = 6 cm , D E 平分乙 ADC交BC边于点E,贝U BE等于cm .图3【例25】已知平行四边形ABCD的周长为60 cm ,对角线AC、BD相交于0点,;AOB的周长比BOC的 周长多8cm,贝U AB的长度为cm .【例26】一个平行四边形的两条对角线的长分别为5和7,则它的一条边长a的取值范围是【例27】如图,是某区部分街道示意图,其中CE垂直平分AF , AB / DC , BC II D F,从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B _D _A _E,路线2是B _C _F _E,请比较两条路线路程的长短,并给出证明.【

10、例28】如图是某市一公园的路面示意图,其中,ABC D是平行四边形,BE_AC , D F _ AC , E、F是垂足,G、H分别是BC、AD的中点,连接EG , GF , FH . HE为公园中小路,问小明从 B 地经E地,H地到F地,与小强从D地经F地,G地到E地,谁的路程远.【例29】在平行四边形A BCD中,过A任作一直线AM,过B、C、D作AM的垂线BE、CF、DG , 垂足分别是E、F、G,求证:BE =DG _CF .【例30】AC是平行四边形OF _ AD 于点 F ,ABCD较长的一条对角线,点0G _ AC于点G,求证:AE .AB - AFO 是 ABC D内部一点, 0

11、 E _ A B于点 E.AD =AG AC .FAGE 0B二、平行四边形性质和判定的综合应用【例31】点A、B、C、D在同一平面内,从 AB II CD,AB =CD,BC II AD,BC = AD .这 四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()种A . 3B . 4C. 5D. 6【例32】如图,已知:AD是.-;ABC的角平分线,证:四边形BD EF是平行四边形D E II AB ,在AB上截取B F二A E,连接DE , EF,求【例33】已知:如图,在平行四边形 ABCD中,E , F分别是AB,CD的中点求证:.'AF D B.lCEB ; 四边形

12、AECF是平行四边形.【例34】如图所示,P为平行四边形ABCD内一点,求证:以 AP、BP、CP、D P为边可以构成一个四 边形,并且所构成的四边形的对角线的长度恰好分别等于AB和BC .【例35】如图,四边形ABC D中,AB II CD ,. B =./D , B C =6 , AB =3,求四边形ABC D的周长.【例36】如图所示,在平行四边形AB CD中,、F是对角线 AC上两点,且AF =CE ,求证:四边形 BED F是平行四边形.【例37】已知:如图,AD II BC、ED II BF,且AF =CE .求证:四边形ABCD是平行四边形.【例38】如图,在平行四边形 ABCD

13、的各边AB , BC , C D , DA上,分别取E , F , G , H,使AE =CG ,BF =DH,求证:四边形 EFGH为平行四边形【例39】如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F .若FE 圧,且 AF - AE =CP - CF.求证:四边形ABCD是平行四边形.【例40】如图,在平行四边形 ABCD中,点E , F在AD , BC上, 与D F交于点N ,求证:四边形EM FN是平行四边形且AE=CF , AF与BE交于点MCE【例41】如图,在平行四边形ABCD中,点M、四边形MFNE是平行四边形.N是对角线AC上的点,且A

14、M = C N , DE=BF,求证:【例42】如图,E、F分别是平行四边形 ABCD的AD、BC边上的点,且 AE =CF .求证:"BE也CDF ;若M ,N、分别是BE、D F的中点,连接MF、EN,试判断四边形 MFNE是怎样的四边形, 并证明你的结论.【例43】如图,过四边形AB CD对角线的交点0作直线E F交AD、 OB、0D的中点,求证:四边形 EH FG为平行四边形.B C分别于E、F,又G、H分别为【例44】.'A CD、UABE 、.汨 CF如图,为平行四边形.均为直线BC同侧的等边三角形.当AB = AC时,证明四边形AD FE【例45】如图,点E ,

15、 F , G , H , M , N分别在.-.ABC的BC , AC , A B边上,且NH / M G / BC , M E / NF / AC , GF II EH II AB,有黑、白两只蚂蚁,它们同时同速从 F点 出发,黑蚂蚁沿路线 F > N > H > E > M > G > F爬行,白蚂蚁沿路线 F > B > A > C > F 爬行,那么()A .黑蚂蚁先回到F点B. 白蚂蚁先回到F点C. 两只蚂蚁同时回到F点D .哪只蚂蚁先回到F点视各点的位置而定【例46】以ABCD的对边AB、CD为边分别在外作等边.ABE、等

16、边.C D F .求证: 四边形AECF是 平行四边形.【例47】等边.'ABC 中,点D在BC上,点 E在AB上,且CD =B E,所以 AD为边作等边 四边形CDFE是平行四边形.'AD F .求证:【例48】如图,已知AC是平行四边形 ABCD的对角线,.:ACP和AACQ都是等边三角形,求证:四边形BPDQ是平行四边形.PDBAQ【例49】如图,JABC中,D是AB的中点,E是AC上任意一点,EF / AB , D F / BE .求证:DF与AE互相平分.AF【例50】已知BD为平行四边形 AB CD的对角线,过C作CE II BD,连接AE交BD的延长线于F , 求

17、证:AF =FE .A【例51】如图,田村有一口呈四边形的池塘,在它的四个角 A,B,C,D处均种有一颗大核桃树,田村准备 开挖池塘建养鱼池,想使池塘面积扩大一倍,又想让核桃树不动,并要求扩建后的池塘成平行四 边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形,若不能,请说明理由,在D E【例52】如图,在."ABC中,.ACB =90,点E为AB中点,连结CE ,过点E作ED _ BC于点 的延长线上取一点F,使AF =CE .求证:四边形 ACE F是平行四边形.【例53】如图,在平行四边形 ABC D中,DE_AB于E , BM =MC=DC,那么.EMC与.BEM

18、的大小 关系怎样?第15页共17页【例54】已知平行四边形 ABCD, BC =2AB, M为AD的中点,CE_AB .求证:.EMD=:3. AEM【例55】已知:如图,平行四边形AB CD中,AE、BE、C F、D F 分别平分.BAD、. ABC、. BCD、. CDA ,BE、DF的延长线分别交AD、B C 于点 M、N .连接EF,若AD=7 , AB =4 .求 EF 的长.D【例56】G、H四点,若Sahpe=3SpfCG-5,求 S PBD如图,P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线,交平行四边形于【例57】已知五边形ABCD E中,AC II E D,交 BE 于点 P , AD II BC , ?交 B E 于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论