《3.2 函数的基本性质》多媒体精品ppt课件_第1页
《3.2 函数的基本性质》多媒体精品ppt课件_第2页
《3.2 函数的基本性质》多媒体精品ppt课件_第3页
《3.2 函数的基本性质》多媒体精品ppt课件_第4页
《3.2 函数的基本性质》多媒体精品ppt课件_第5页
已阅读5页,还剩34页未读 继续免费阅读

《3.2 函数的基本性质》多媒体精品ppt课件.ppt 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章第三章 函数的概念与性质函数的概念与性质3.2.1 3.2.1 单调性与最大(小)值单调性与最大(小)值课程目标课程目标1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养数学学科素养1.数学抽象:用数学语言表示函数单调性和最值;2.逻辑推理:证明函数单调性;3.数学运算:运用单调性解决不等式;4.数据分析:利用图像求单调区间和最值;5.数学建模:在具体问题情境中运用单调性和最值解决实际问题。 自主预习,回答问题自主预习,回答问题阅读课本阅读课本76-77页,思考并

2、完成以下问题页,思考并完成以下问题1.增函数、减函数的概念是什么?增函数、减函数的概念是什么?2.如何表示函数的单调区间?如何表示函数的单调区间?3.函数的单调性和单调区间有什么关系?函数的单调性和单调区间有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。2单调性与单调区间单调性与单调区间 如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间上具有(严格的)_,区间D叫做yf(x)的_点睛一个函数出现两个或者两个以上的单调区间时,不能用“”连接,而应该用“,”连接如函数y 在(,0),(0,)上单调递减,却不能表述为:函数y 在(,0)(

3、0,)上单调递减1x1x自主预习,回答问题自主预习,回答问题阅读课本阅读课本79-80页,思考并完成以下问题页,思考并完成以下问题1.函数最大函数最大(小小)值的定义是什么?值的定义是什么?2.从函数的图象可以看出函数最值的几何意义是什么?从函数的图象可以看出函数最值的几何意义是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。点睛最大(小)值必须是一个函数值,是值域中的一个元素,如函数yx2(xR)的最小值是0,有f(0)0.题型分析题型分析举一反三举一反三题型一题型一利用图象确定函数的单调区间利用图象确定函数的单调区间例1 求下列函数的单调区间,并指出其在单调区间上

4、是增函数还是减函数:分析:若函数为我们熟悉的函数,则直接给出单调区间,否则应先画出函数的草图,再结合图象“升降”给出单调区间.解:(1)函数y=3x-2的单调区间为R,其在R上是增函数.(2)函数y=- 的单调区间为(-,0),(0,+),其在(-,0)及(0,+)上均为增函数.解题方法解题方法(利用图象确定函数的单调区间利用图象确定函数的单调区间)1.函数单调性的几何意义:在单调区间上,若函数的图象“上升”,则函数为增区间;若函数的图象“下降”,则函数为减区间.因此借助于函数图象来求函数的单调区间是直观且有效的一种方法.除这种方法外,求单调区间时还可以使用定义法,也就是由增函数、减函数的定义

5、求单调区间.求出单调区间后,若单调区间不唯一,中间可用“,”隔开.2.一次、二次函数及反比例函数的单调性:(1)一次函数y=kx+b(k0)的单调性由系数k决定:当k0时,该函数在R上是增函数;当k0时,该函数在R上是减函数.(2)二次函数y=ax2+bx+c(a0)的单调性以对称轴x=- 为分界线.由图象可知,函数的单调增区间为(-,1,2,+);单调减区间为1,2.题型二题型二利用函数的图象求函数的最值利用函数的图象求函数的最值 例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.由图象知,函数y=-|x-1|+2的最大值为2,没有最小值.所以其值域为(-,

6、2.解题方法解题方法(用图象法求最值的3个步骤)(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.解:(1)函数f(x)的图象如图所示.(2)由图象可知f(x)的最小值为f(1)=1,无最大值.题型三题型三证明函数的单调性证明函数的单调性 例3 求证:函数f(x)=x+ 在区间(0,1)内为减函数.证明:设x1,x2是区间(0,1)内的任意两个实数,且x1x2, 0 x1x20,x1x2-10,x1-x20,即f(x1)f(x2).故函数f(x)=x+ 在区间(0,1)内为减函数.解题方法解题方法(利用定义证明函数单调性的4个步骤)特别提醒特别提醒 作差变形的常用技巧:(1)

7、因式分解.当原函数是多项式函数时,作差后的变形通常进行因式分解.如f(x)=x2-2x-3=(x-3)(x+1).(2)通分.当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.如本例.(3)配方.当所得的差式是含有x1,x2的二次三项式时,可以考虑配方,便于判断符号.(4)分子有理化.当原函数是根式函数时,作差后往往考虑分子有理化.跟踪训练三跟踪训练三1.求证:函数f(x) 在(0,)上是减函数,在(,0)上是增函数21x题型四题型四利用函数的单调性求最值利用函数的单调性求最值 例4 已知函数f(x)=x+ .(1)判断f(x)在区间1,2上的单调性;(2)根据f(x)的单调性

8、求出f(x)在区间1,2上的最值.解:(1)设x1,x2是区间1,2上的任意两个实数,且x1x2, x1x2,x1-x20.当1x10,1x1x24,即x1x2-4f(x2),即f(x)在区间1,2上是减函数.(2)由(1)知f(x)的最小值为f(2),f(2)=2+ =4;f(x)的最大值为f(1).f(1)=1+4=5,f(x)的最小值为4,最大值为5.解题方法解题方法(单调性与最值的关系) 1.利用单调性求函数最值的一般步骤: (1)判断函数的单调性;(2)利用单调性写出最值. 2.函数的最值与单调性的关系: (1)若函数f(x)在区间a,b上是增(减)函数,则f(x)在区间a,b上的最

9、小(大)值是f(a),最大(小)值是f(b). (2)若函数f(x)在区间a,b上是增(减)函数,在区间(b,c上是减(增)函数,则f(x)在区间a,c上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个. (3)若函数f(x)在区间a,b上的图象是一条连续不断的曲线,则函数f(x)在区间a,b上一定有最值. (4)求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最大(小)值.跟踪训练跟踪训练四四题型五题型五函数单调性的应用函数单调性的应用例5 已知函数f(x)在区间(0,+)上是减函数,试比较f(a2-a+1)与f 的大小.解题方法解题方法(抽象函数单调性求

10、参)1.利用函数的单调性可以比较函数值或自变量的大小.在利用函数的单调性解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上.2.利用函数的单调性解函数值的不等式就是利用函数在某个区间内的单调性,去掉对应关系“f”,转化为自变量的不等式,此时一定要注意自变量的限制条件,以防出错.跟踪训练五跟踪训练五1.已知g(x)是定义在-2,2上的增函数,且g(t)g(1-3t),求t的取值范围.解题方法解题方法(解函数应用题的一般程序)(1)审题.弄清题意,分清条件和结论,理顺数量关系.(2)建模.将文字语言转化成数学语言,用数学知识建立相应的数学模型.(3)求模.求解数学模型,得到数学结论.(4)还原.将用数学方法得到的结论还原为实际问题的意义.(5)反思回顾.对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论