人教版九年级数学《二次函数》知识点梳理与总结(超经典)_第1页
人教版九年级数学《二次函数》知识点梳理与总结(超经典)_第2页
人教版九年级数学《二次函数》知识点梳理与总结(超经典)_第3页
人教版九年级数学《二次函数》知识点梳理与总结(超经典)_第4页
人教版九年级数学《二次函数》知识点梳理与总结(超经典)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学 九年级二次函数知识梳理与总结一、二次函数的概念1、定义:一般地,如果是常数,那么叫做的二次函数.2、注意点:(1)二次函数是关于自变量x的二次整式,二次项系数a必须为非零实数,即a0,而b、c为任意实数。(2)当b=c=0时,二次函数是最简单的二次函数。(3)二次函数是常数,自变量的取值为全体实数 (为整式)3、三种函数解析式:(1)一般式: y=ax2+bx+c(a0), 对称轴:直线x= 顶点坐标:( ) (2)顶点式:(a0), 对称轴:直线x= 顶点坐标为(, )(3)交点式:y=a(x-x1)(x-x2)(a0), 对称轴:直线x= (其中x1、x2是二次函数与x轴的两个

2、交点的横坐标).二、二次函数的图象1、二次函数 的图像是对称轴平行于(包括重合)轴的抛物线.2、二次函数由特殊到一般,可分为以下几种形式:;.注:二次函数的图象可以通过抛物线的平移得到3、二次函数的图像的画法 因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是: (1)先找出顶点坐标,画出对称轴; (2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.三、二次函数的性质函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0, )(,0)(,)()注:常用性质:1、开口方

3、向:当a>0时,函数开口方向向上; 当a<0时,函数开口方向向下;2、增减性:当a>0时,在对称轴左侧,y随着x的增大而减少;在对称轴右侧,y随着x的增大而增大;当a<0时,在对称轴左侧,y随着x的增大而增大;在对称轴右侧,y随着x的增大而减少;3、最大或最小值:当a>0时,函数有最小值,并且当x= , y最小 当a<0时,函数有最大值,并且当x= , y最大 四、.抛物线的三要素:开口方向、对称轴、顶点坐标。的符号决定抛物线的开口方向 对称轴平行于轴(或重合)的直线记作.特别地,轴记作直线.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么

4、抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.五、抛物线中a、b、c的作用 1、a决定抛物线的开口方向和开口大小的符号决定抛物线的开口方向:当a>0时,函数开口方向向上; 当a<0时,函数开口方向向下;的大小决定抛物线的开口大小:当越大时,开口越小;当越小时,开口越大;相等,抛物线的开口大小、形状相同.2、a和b共同决定抛物线的对称轴位置。(x=) 左同右异:如果对称轴在Y轴左侧,则a、b符号相同。 如果对称轴在Y轴右侧,则a、b符号相反。注意点:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧.3、c的大小决定抛物线于y轴的交点位置。(于y

5、=kx+b中的b作用相同) 当时,抛物线经过原点; 当时,与轴交于正半轴;当时,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .六、抛物线的平移 方法:左加右减,上加下减 抛物线的平移实质是顶点的平移,因为顶点决定抛物线的位置,所以,抛物线平移时首先化为顶点式 向上(k>0)向下(k<0)平移k个单位 向上(k>0)向下(k<0)平移k个单位七、二次函数是常数,的最大值和最小值的求法二次函数是否有最值,由a的符号确定。1、 当a>0时,抛物线有最低点,函数有最小值,当x= , y最小 2、 当a<时,抛物线有最高点,函

6、数有最大值,当x= , y最大 注:如果自变量x有取值范围,则另当别论。八、用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴或最值,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.九、抛物线()与x轴的交点个数 与x轴交点,令y0,则有 即解一元二次方程 当>0时,方程 有两个不相等的实数根,即抛物线与x轴有两个不同的交点。当0时,方程 有两个相等的实数根,即抛物线与x轴有一个交点。当< 0时,方程 没有实数根,即抛物线与x轴没有交点。十、抛物线与轴两交点之间的距离:若抛

7、物线与轴两交点为,由于、是方程的两个根,故注:次公式的推导依据一元二次方程(韦达定理)的知识,需理解记忆!十一、直线与抛物线的交点问题 (1)轴与抛物线得交点为(0, ). (2)与轴平行的直线与抛物线有且只有一个交点(,). (3)抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物线与轴相离. (4)平行于轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相

8、等,设纵坐标为,则横坐标是的两个实数根. (5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点.十二、抛物线与不等式的关系 (利用数形结合,通过图象得出结论)1、 (设a、b、cR且a>0)=b2-4acy=ax2+bx+c 的图象ax2+bx+c=0 的实根ax2+bx+c>0 的解集ax2+bx+c<0 的解集 >0   y   o x x1,2=(x1<x2)  (-,x1)(x2,+)

9、   (x1,x2) =0   y   o x x1=x2= - xx-   <0   y     没有实根  (-,+)   例:已知:y= x2x6问:x取何值时,y>0 y=0 y<0 ?解: 画出图像,如图:由图像得:y > 0 时 x2或x3 Y = 0 时x2或x3Y < 0 时 2x3注:函数图象反应的是函数值的变化趋势十三、几个重要的结论 1、对于二次函数 而言 b=0时 对称轴为 x=0 c=0时 抛物线过原点 函数值y>0 恒成立 îíì<D>00a 函数值y<0恒成立 îíì<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论