学习的演讲稿汇总5篇1_第1页
学习的演讲稿汇总5篇1_第2页
学习的演讲稿汇总5篇1_第3页
学习的演讲稿汇总5篇1_第4页
学习的演讲稿汇总5篇1_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学习的演讲稿汇总5篇祝你成功!学习的演讲稿汇总5篇 古时诸葛亮,足智多谋,神机妙算,聪明地运用自己的知识多次击退了曹操,孙权,巩固了刘备在三国鼎立的地位。 更有孔子。名丘,字仲尼,儒家创始人,用自己的知识帮社会训练了一群精英,更有孟子,荀子等。曾有一位知识渊博的人用半部论语治理国家。有人说:书山有路勤为径,学海无涯苦作舟,我认为,学习的却如此,当你知道的东西越多时,你不知道的东西也会变得更多。为了我们的未来,为了我们的祖国,就让我们好好学习,天天向上吧! 学习的演讲稿 篇2 每个人都希望自己聪明,长大后能成才,但聪明人不是你想当就当的,必须经过勤奋的努力。你想出国留学,就得学好外语,怎样学好外

2、语呢?就得早上读,晚上背,勤奋学习;你想当名体操健儿,怎样当呢?就得坚持体育锻炼,勤奋联系;你想当一名科学家,怎样当呢?就得多看百科书记,拓宽视野总之,无论你想干什么,不勤奋是根本实现不了的。我国古代著名桥梁专家茅以升就是个典型的例子。茅以升童年时,天天早上都自觉地站在河岸边,背诵古诗文。身边风帆来往、渔歌阵阵,他都视而不见,充耳不闻,完全沉浸在知识的海洋中。这样日长天久,茅以升背了许多古诗词,同时也锤炼了自己的记忆力。一天,他爷爷抄写古文,茅以升就在一旁默记,等爷爷搁下笔,他竟能把爷爷抄的京都赋一字不漏地背下来。爷爷高兴地说:“好,好,熟能生巧!”还有一次,茅以升看到有一篇文章把圆周率的近似

3、值写到小数点后100位,于是,他一节一节地来记这串长数:14,15,92,65,35,89,79,32尽管很难记,但茅以升勤奋努力,终于背了下来。同学们,茅以升长大之后,之所以能成为我国著名的桥梁专家,不正是因为他的勤奋吗?他之所以那么聪明,不也是因为他的勤奋吗?由此,我想到:人的智商本都一样,只不过有的人更勤奋,所以才能出类拔萃,如果一个人不勤奋的话,再聪明的大脑也会变得迟钝。同学们,现代社会是一个充满竞争的社会,我们只有勤奋努力,刻苦学习,让自己更聪明,才能跟上时代的步伐。岁月的脚步是多么的匆匆,毫不顾惜我们的感慨和嗟叹。正因如此,无数出色的人总是把时间抓得死死的,一时一刻也不敢懈怠。他们

4、占据了不同的时间,使时间有了价值,我们先看一看法国作家巴尔扎克一天的时间表:8:00-17:00除早午餐外,校对修改作品清样。17:00-20:00晚餐之后外出办理出版事务,或走访一位贵夫人,或进古玩店过把瘾-寻求一件事珍贵的摆设或一幅古画。20:00 就寝0:00-8:00 写作,夜半准时起床,一直写到天亮。这位每天只睡4个小时、身高不足1.6米的文字巨匠,摒弃了巴黎的繁华和喧嚣,一个人静夜独坐,手握鹅毛笔管,蘸着心血和灵感,写了96部小说,演绎了一部人间喜剧。热爱生活、勤奋惜时的巴尔扎克只活了51岁,他的作品却使他流芳百世。无独有偶,在美国,有一个人在一年之中,他只有三天的时间不写作。也就

5、是说,他只有三天的休息时间。这三天是:生日、圣诞节、美国独立日(国庆节)。他的每一天里,都几乎做着同一件事:天刚刚放亮,他就伏在打字机前,开始一天的写作。这个男人名叫斯蒂芬·金,是国际上著名的恐怖小说大师。斯蒂芬·金和一般的作家不同。一般的作家在没有灵感的时候,就去干别的事情,从不逼自己硬写。但斯蒂芬·金在没有什么可写的情况下,每天也要坚持写五千字。这是他在早期写作时,他的一个老师传授给他的一条经验,他也是坚持这么做的,这使他终身受益。他说,我从没有过没有灵感的恐慌。勤奋给他带来的好处是永不枯竭的灵感。斯蒂芬·金的经历也是十分坎坷的。他曾经潦倒得连电话费

6、都交不起,电话公司因此而掐断了他的电话线。而现在他是世界上著名的恐怖小说大师,整天稿约不断。常常是一部小说还在他的大脑之中储存着,出版社高额的订金就支付给了他。已经是高级的大富翁了。可是,他的每一天,仍然是在勤奋的创作之中度过的。他们成功的秘诀很简单,只有两个字:勤奋。学术大家季羡林老先生曾经说过:"勤奋出灵感。"缪斯女神对那些勤奋的人总是格外青睐的,她会源源不断地给这些人送去灵感。盛年不重来,一日难在晨。及时当勉励,岁月不待人。做一个勤奋的人。 学习的演讲稿 篇3 尊敬的各位领导、各位老师:早上好!我今天演讲的题目是读书,打好人生底色。1811年2月12日,一个男孩出生在

7、美国肯塔基州乡村一个穷苦农民的家里。因为家里穷,他没有机会上学。他一生中进学校上学的时间加起来不到一年。他的母亲能阅读,但从来没有学过写,而他的父亲也仅能写他自己的名字。可是,他却被书籍强烈地吸引着。他7岁开始上学,每星期只去学校23天。从那时起,他开始了自己的启蒙教育。他把燃烧过的木头当成"铅笔",在粗糙的木板上练习写字母。夜晚,他向母亲大声朗诵圣经,还反复阅读伊索寓言。十几岁时,他从50里范围内的所有邻居那里寻找并借回很多书,包括本杰明弗兰克林自传、华盛顿的一生和天路历程。他抓住一切机会认真阅读。当其他小伙伴在山上玩捉迷藏游戏的时候,他却手捧书本在一棵树下阅读。吃完饭后

8、,他又很快拿起书本。9岁时,他深爱的妈妈不幸去世。他和姐姐用读母亲最喜欢的圣经章节的方式来安慰母亲的在天之灵。当他父亲再婚时,继母带了几样家具和三本书到她的新家:韦氏大字典、鲁滨逊漂流记和天方夜谈。他把这些书读了一遍又一遍。他渐渐成为了一位精通写作的人,以至于他的邻居们愿意出钱请他写信和简单的遗嘱。21岁时,他决定外出。最后在一个住有100多个新移民,位于西部边境的小村庄安顿下来。这个小村庄有6位受过大学教育的人,其中包括两位知识渊博的内科医生,他们允许他随时借阅他们的书籍。在此后的7年,他做过两份工作,都是允许他可以长时间读书而不受打扰的工作。第一份工作是商场店员,第二份工作是邮递员。他在接

9、待顾客之余,广泛阅读了哲学、科技、宗教、文学、法律和政治学方面的书籍。事实上,通过阅读,他自己授予了自己一个优等的大学毕业文凭。1837年,28岁的他虽然连小学一年级都没毕业,却已经是伊利诺依州的执业律师了。1861年,他通过参加竞选,成为美国第十六任总统。他就是美国历史上最伟大的总统之一,亚伯拉罕林肯听了这一个故事,你们一定会从中有所感悟、有所启迪吧。在人类历史上,不论是国内还是国外,因勤奋读书而改变自己的命运,乃至改变国家、民族的命运,影响人类文明进程的事例有如天上的繁星,数不胜数。他们的故事影响着、激励着一代又一代的人,而要认识他们,从他们身上汲取精神力量的最好办法仍是读书。你不可能在现

10、实生活中结识世界上所有的伟人、大师,但通过读书,就有可能。歌德说:"读一本好书,就是和许多高尚的人谈话".你不可能回到过去,也不可能提前进入将来,但书籍可以把你带到过去和未来。有人说,不读书的人只生活在现在,而读书人是同时生活在三个时代-过去、现在和未来。你不可能走遍世界各地,但书籍可以把你带到地球的每个角落。文字、书籍是人类历史上最伟大的发明,而如果你能够利用,却不去利用这个最伟大的发明,那真是最大的愚昧,枉到人世一遭。读书就意味着教育,甚至意味着学校。前苏联教育家苏霍姆林斯基说:"学校首先意味着书籍".没有供师生阅读,充实师生精神生活所需要的丰富的书

11、籍,或者虽有丰富的书籍而缺乏热爱读书的师生的学校,不能算是一所真正的学校,可以说只是一间"制造、生产劳动力的工厂".你们喜欢读书吗?那么开始读书吧,收获吧,品味吧,进取吧!让我们尽情地在书中沐浴,在书中享受。书是黄金,珍贵无比;书是阳光,能量无限。捧起书本吧!可以废寝,可以忘食。读书中,我收获着;读书中,我成长着。我爱读书,我爱收获。谢谢大家。 学习的演讲稿 篇4 大家好,今天非常高兴、非常荣幸能参加这样一个盛会。今天我给带来的演讲是我的一点学习心得,题目叫做自学习的人工智能。首先大家都知道在60周年之际,我们首先应该记住的是这位人工智能的先驱,图灵。在他的问题的感召下,我

12、们就有了今天这样的一个盛会和今天人工智能的飞速发展。他的问题,机器可以思维吗?可以从不同的维度来解释,那么首先人类对人工智能的一个探索也可以围绕对问题不同解释的探索。第一个探索,应该说是在逻辑层面的探索。60年代人工智能的这些先驱就考虑用逻辑和搜索来研究人工智能,比如下棋、推理,比如说可以去做路径规划等等。那么他们有一个很强的假设,这个假设应该说从某种程度上来说是非常直观的。智能包括计算机可能赋予的智能,是来自于计算物理符号的排列组合,我们只要能很聪明的把这些物理符号排列组合的话,人类是可以从一系列的零和一的组合来得到。有了一些成就之后也发现这样的假设是有它的瓶颈的。在之后大家又有一部分人着力

13、于研究能够有学习功能的人工智能,就有不同的学习算法,机器学习的计算法被研究出来。其中包括大家都熟悉的人工神经网络。人工智能的几个里程碑我们现在也很熟悉,第一个大家公认的是里程碑是深蓝,这个比赛意味着几件事。一个是说在大规模的搜索的状态下,在可能的状态空间的搜索,实际上是一个在物理符号的空间的排列组合。也就是说在60年代人们的那些假设有一部分是正确的,我们确实可以从这种搜索和物理符号的排列组合获得很多的智能。紧接着的阶段是,知识就是力量,这是随着互联网和大数据到来的一个热潮,从网上,从不同的媒体我们会获得很多数据,把这些数据经过沉淀变成知识,我们就可以赢得像这样一个电视大赛中的人机对战。这个之后

14、,刚刚芮勇博士也深入的回顾了一下最近的人工智能的突破,就是深度神经网络。深度神经网络的突破从计算上来说有几个好处,其中一个好处是说它把一个全局计算的需求变成一个本地计算的需求,在做到这样的一个同时呢,又不失掉很多的信息,这个是计算机里面无数成就的一个中心点。这样的一个成功就使得我们能够在不同的层次来观察同一个数据,同样就可以获得我们所谓的大局观。就像这个图,我们在不同的层次可以得到不同的特征。这里我们要特别强调的是人工智能也在另外一个方面潜移默化的默默的在耕耘,这个就叫做强化学习。强化学习应该说是用来做人工智能规划的有力工具,但不是唯一的规矩。规划这个领域相对深度学习应该说更古老,研究的力度也

15、很多。但在很长时间一段处于静默状态,这个原因是因为它在计算上有很大的瓶颈,不能有很大得数据量。一个例子就是强化学习在很长时间以来只能解决一些玩具型的问题,非常小的数据。但是最近的一个突破是Google的DeepMind,把深度学习和强化学习合在一起,这样的一个议题使得很多强化学习所需要突破的瓶颈,就是状态的个数能隐藏起来。这种隐藏就使得强化学习能够大规模的应付数据,就是说应付大数据。它突出的一点叫做端到端的学习,就是说我们在这里看到一个计算机的游戏,这个游戏的影像是输入端,输出端就是你要进行的下一个动作。这个动作是正确还是不正确,到最后会获得一个反馈,这个反馈不一定是现在得到,也许是后面几步得

16、到的。这一点和我们刚刚讲的深度学习在图像上面的应用,就大不一样。就更加复杂,更加契合人的行为,所以强化学习也是下一个突破。我们看到这种端到端的深度学习,应用在强化学习上,使得DeepMind到今天在很古老的单人的计算机游戏上已经把人类完全击倒,它做到这样是通过完全的自学习,自我修炼、自我改正,然后一个一个迭代。这个就是它迭代的一些结果,从左到右是一个时间轴,从下到上是它得到的效果。我们看到每一个游戏它的要求都是在不断成长的,就像我们一个学生在学习的过程当中学到的知识越来越多,这个完全是自我实现,一个自学习的过程。包括现在的AlphaGo也应用了很多自学习的这种效果,使得我们现在终于认清原来人工

17、智能从60年代到20_(请自填)年的物理符号的假设,也就是说以搜索为中心,以逻辑为中心的这种努力并没有白费,这种努力也是需要的。另外学习也是必不可少的,像我们熟知的深度学习。所以AlphaGo对我们的启示,就是我们把两者结合起来,才是一个完整的智能机器。这个我们可以叫做人工智能的通用性,也就是说我们对于这两个技术的某种结合,比方说多一点搜索,少一点机器学习,或者反之我们够可以得到用来解释不同的人类的智能行为。这种通用型,端到端的学习,可以用这个例子来表达。就是这个鸡可以吃不同的食物,但是它下的蛋都是对人类有用的。这里我要特别提到一点,我们并不是找到了最后的目标,这也是在不同的人工智能、强化学习

18、,等等之类的实验当中我们发现一个特点。就是我们不能完全的依靠机器去全部自动化的自我学习,至少到现在我们还没有摸索出这样一个路径。这里是大学的例子,中文是永动机器学习,就是说这个机器不断的在网上爬一些网页,在每个网页里面都学到一些知识,把这些知识综合起来,变成几千万条知识,这些知识又会衍生新的知识。那么我们看到从下到上是随着时间,知识量的增长。那么它到了某一个程度实际上是不能再往上走了,因为知识会自我矛盾。这个时候就需要人进来进行一部分的调节,把一部分不正确的知识去掉,让它继续能成长。这个过程为什么会发生呢?是因为机器学习一个很严重的现象,就是自我偏差,这种偏差就可以体现在这种统计学的一个重要的

19、概念,就是我们获得的数据也许是一个有偏数据,我们可能建了一个模型,对大部分的数据都有用,但其中有一些特例。我们如何来处理这些特例,如何来处理我们训练数据和应用数据之间的偏差,这个是我们下一步要研究的内容。一个非常有希望的技术叫做迁移学习,比方说这个是在深度学习的模型上,在上面这一部分是一个领域已经训练好的模型。那么在一个新的领域,如果这两个领域之间有某种联系、某种相似性的话,我们就不一定在新的领域需要那么多的数据来学习,你只需要一小部分。我们之所以能做到这一点是我们可以把大部分的模型给迁移过来,我们人有这种能力,但是我们在做这种数据迁移的过程中,我们一定要牢记把这种有偏的数据偏差给消除掉。如果

20、能做到这点我们就能做到不同形式的数据之间的知识迁移,比方说我们可以让一个计算机来读很多文字,这样的一个计算机去识别图像,应该比没有读这些文字,直接去学习图像来的要容易。这个就更像我们人类的学习。这种学习也离不开从下到上,从粗到细这样的一种特征的选择。所以我们又得到另外一个概念,就是特征工程。深度学习给我们的一个有力的工具是能够自动的进行不同层次,进行大规模的新特征的抽取和特征的制造。那么这种特征在搜索引擎、广告系统上面,可以达到万亿级,也就是说这个已经完全不是人类所可以控制的级别了。那么智能在这样的级别上才可以产生。但是现在人工智能仍然有一些困境,比方说如何能够让人工智能来深层的理解文字,有一

21、个著名的类似于图灵测试的比赛,深层次理解文字,这个是在自然语言上问一些有歧异的问题,计算机如果要能正确的回答这个问题,那个模型不仅仅理解这些文字,而且要理解深层的背景文字,要理解周边的文字,有很多文化在里面,如何能达到这一点?也是我们需要解决的。同时深度模型还可以把它反转,成为一种生成膜型。它不仅可以去对数据做一个决策,它还可以自己产生数据,可以产生新的数据。比方说这个是Google的一些研究员把一个深层模型里面的感知最深刻的那些图像给描述出来,结果是这样的,就非常有趣的生成膜型。刚刚讲的不同数字格式之间,文字和图像之间,如果在深层实际上它们的区别已经消失了。那这样我们就可以对图像去问文字的问

22、题,甚至对文字去问图像的问题。这样数据的形式也就不重要了。如果我们达到了迁移学习的要点,我们想问下一步是不是可以把所有人类经历过的这些学习的任务给沿着时间轴串起来,能够让机器向人一样的,它的学习能力,它的智能在不断的增长,随着时间。那么它所需要学习的努力程度,样本数也是逐渐减少的。这个也是我们在努力的一个方向。另外最近发表了一篇文章也说明了迁移学习的重要性。这个文章叫做bayesianprogram learning,这是从一个例子就能学会,我们知道深度学习是千万个例子的。实际上它用了我们过去没有涉及到的概念,就叫做结构,如果我们了解了一个问题的结构,那么这个结构的一个具体的形式只用一个例子就

23、可以学会了。其他的部分,需要很多例子的那一部分可能是参数、统计,这一部分我们实际上可以通过迁移学习来学习。也就是说整个这个圆就圆满了,就是一个闭环了。同时人工智能的应用也不仅仅是在图像方面,这里的一个例子是亚马逊的仓储机器人。亚马逊的仓储机器人是在一个很大的空间,这些机器人会把这些货架,每个货架上面都有不同的货品,把这些货架偷到工人的面前,让工人从货架上面拿所需的货品到箱子里面,然后快递给客户。为什么是这样呢?因为现在的机器人技术在选择,从货架上选择物体还远远不如人的熟练程度,但是它在路径规划,在机械的启动、抬起、放下已经超过人了。所以亚马逊的就很聪明的把机器的优点和人的优点结合在一起,变成一

24、个新的商业模式。如果过去建一个仓储在支持这个城市亚马逊所有的物流的话,需要三个月时间,他用了这个把所有的传送带拆掉,变成机器人以后只用三天时间,这个收益是非常巨大的,也就是我们可以借鉴,可以拓展的一个经验。下面要讲的,不仅在机器人,在图像识别,实际上在我们的生活当中,人工智能已经深入了。这里举的一个例子是我和我的一个学生戴文渊,建的一个公司,第四范式,这个公司可以让过去在金融领域只能由人来服务重要的客户,由人工智能来把这个能力拓展到几千万人,让每个人都享受到优质的金融服务。这是一个非常大的工程。它背后的技术就是机器学习,我们所熟知的深度学习、知识学习、强化学习。最后我要说几点,我们看到这么多人

25、工智能的努力,人工智能的有失败的时候,有成功的时候,我们到现在能总结出什么经验呢?我觉得现在的人工智能的成功离不开高质量的大数据,但是并不是未来的人工智能的成功一定需要大数据。那么我们下面要问是不是在未来有小数据也可以让人工智能成功,这就是今天我觉得在大学里面应该做的一个研究,在工业上大家还在开疆拓土,利用大数据的优势在发现新的应用利于。第二个,就是要培养出更多的人工智能的人才。这些人才才可以来设计算法,这个也是我们今天在大学里面需要努力的一个方向。当然这些都离不开计算能力。所以从这几点上来看人工智能的努力也不是像有些人说的,今天的人工智能的发展完全在工业,人工智能的发展也应该一部分依靠大学,

26、一部分依靠工业。就像我们所说的大数据和人才的培养,小数据的研究。那么大数据的开疆拓土更多的应用,和更多的计算能力,确实来自于工业。所以这两种结合我觉得是我们今后发展的一个方向。最后我要说一点,就是说我们应该说已经了解很多深度学习了,这个可以作为我们昨天的一个成就。那么今天我们在刚刚开始去获得强化学习的一个红利,那么这个可能还不是在很多的领域得到应用的,但是我要告诉大家的是,强化学习比大家想象的要更有用,比方说它不仅仅是在围棋或者是在计算机游戏上。在金融,在我们日常生活当中,甚至在教育上,机器人的规划都离不开强化学习。那么这些应该说都是富人的游戏,也就是说只有富人才能有这么多的大数据,有这么多的计算量去支持深度学习和强化学习这样的实际应用。那么我们明天要看到的应该是迁移学习,因为迁移学习能够让我们把大数据得到的模型迁移到小数据上面,使得千千万万的人都能够受益,也就是说人人都能享受人工智能带来的红利。我今天讲到这儿,谢谢大家。 学习的演讲稿 篇5 勤奋出不了天才,听

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论