运算放大器应用设计的几个技巧_第1页
运算放大器应用设计的几个技巧_第2页
运算放大器应用设计的几个技巧_第3页
运算放大器应用设计的几个技巧_第4页
运算放大器应用设计的几个技巧_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、运算放大器应用设计的几个技巧Honser 发表于 2007-4-4 11:31:00运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、偏置电路设计、PCB设计等方面的问题。在电子工程专辑网站举行的运算放大器应用设计专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个

2、典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电

3、路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电

4、压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、 如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷电压转换,可是在传感器动态工作时,电荷放大器的输出电压会

5、有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也

6、会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。 开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电压和电流。反馈控制环路的设计影响到许多因素,包括电压调整、稳定性和瞬态响应。    当某个反馈控制环路在某个频率的环路增益为单位增益或更高且总的相位延迟等于360 时,反馈控制环路将会产生振荡。稳定性通常用下面两个参数来衡量:  

7、;  相位裕量:当环路增益为单位增益时实际相位延迟与360 间的差值,以度为单位表示。    增益裕量:当总相位延迟为360 时,增益低于单位增益的量,以分贝为单位表示。    对多数闭环反馈控制系统,当环路增益大于0dB时,相位裕量都大于45 (小于315 )。当环路相位延迟达到360 时,增益裕量为-20dB或更低。    如果这些条件得到满足,控制环将具有接近最优的响应;它将是无条件稳定的,即不会阻尼过小也不会阻尼过大。通过测量在远远超出控制环通常操作带宽的情况下控制环的频率响应,可以保证

8、能够反映出所有可能的情况。    一个单输出开关电源的控制环增益和相位响应曲线。测量是利用一个GP102增益相位分析仪(一种独立的用来评价控制环增益和相位裕量的仪器)进行的,然后输入到电子表软件中。    在这一例子中,从0dB增益交点到360 测量得到的相位裕量为82 (360 到278 )。从0dB增益交点到相位达到360 的增益裕量为-35dB。把这些增益和相位裕量值与-20dB增益裕量和60 相位裕量的目标值相比较,可以肯定被测试电源的瞬态响应和调节是过阻尼的,也是不可接受的。    0dB交点对

9、应的频率为160Hz,这导致控制环的响应太慢。理想情况下,在1或2KHz处保持正的环增益是比较合适的,考虑到非常保守的增益和相位裕量,不必接近不稳定区即可改善控制环的动态特性。当然需要对误差放大器补偿器件进行一些小的改动。进行修改后,可以对控制环重新进行测试以保证其无条件稳定性。    通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行这种测量。这些仪器采用了离散傅里叶变换(DFT)技术,因为被测信号经常很小且被掩盖在噪声和电源开关台阶所产生的失真中。DFT用来从中提取出感兴趣的信号。测试信号注入    为进行测量,FRA向控制

10、环中注入一个已知频率的误差信号扰动。利用两个FRA通道来判断扰动要多长时间才能从误差放大器输入到达电源输出。    扰动信号应该在控制环反馈信号被限制在单条路径的地方注入,并且来自低阻抗的驱动源。连接到电源输出或误差放大器输出的反馈路径是注入扰动信号的好地方。    通过信号发生器通过一个隔离变压器连接到测试电路,以保证FRA信号发生器和被测试电路间的电气隔离。注入方法将扰动信号注入到误差放大器的输入。对于电源输出电压在FRA最大输入电压限制以内的情况,这一方法是合适的。    如果被测量电源的输出电压比

11、FRA最大输入电压还要高,那么第一种注入方法就不适用了。扰动信号被注入到误差放大器的输出,此处的控制环对地电压比较低。如果电源电压超过FRA输入范围则应采用这种注入方法。    选定合适的注入点以后,还必须仔细地设定扰动信号的幅度。扰动的响应可通过连接到电源输出的示波器看到。    开始时,FRA信号发生器幅度应该设为零和低频率,通常在控制环带宽的低端。然后慢慢提高FRA信号发生器的幅度。FRA信号发生器幅度的一个比较好的起始点是能够在示波器上看到电源输出电压波动为额定输出电压的5%左右。    必须在控

12、制环带宽的高端重复这一过程以确保是否可在整个控制环带宽上使用同样的驱动水平。FRA发生器不能欠驱动或过驱动控制环。在此种条件下进行的任何测量都是不准确的。    不大可能在整个控制环带宽范围内使用同一组FRA信号发生器设置。这种情况下,可以利用幅度补偿来保证频率切换和环增益变化时扰动信号稳定。这可以通过控制FRA信号发生器幅度,从而保证恒定的误差放大器输入来达到。进行测量    FRA的两个输入分别连接到注入隔离变压器的次级的两端。CH2测量控制环输出,CH1测量控制环输入。测量是相对于地进行的。   

13、从10Hz扫描到30KHz,观察增益和相位测量重复性,以保证注入控制环的扰动信号幅度是正确的。参考增益-相位图表核对控制环增益和相位裕量。    可在误差放大器一级加入适当的补偿器件。再次进行从低频到高频的扫描可以看到补偿值变化的效果。理想情况下,环增益每频程应该下降-20dB,特别是在控制环增益经过单位增益时。功率因数校正电路    反馈控制环并不仅限于用于开关电源的输出调节。通常用在整流桥后的动态功率因数校正(PFC)电路中采用两个控制环来达到正弦输入电流,从而使负载功率因素接近1.0。PFC电路通常基于专用的控制器IC、一个开关

14、器件和一个能量储存电感器,即所谓的DC连接。    第一个控制环即电压控制环,试图在DC连接或PFC电路输出维持一个稳定的直流电压。这一控制环响应相对比较慢,大约在10Hz左右跨越0dB。第二个控制环即电流控制环有效地控制输入电流的波形。这一脉宽调制(PWM)斩波器电路必须跟踪整流正弦电压波形,因此,电流控制环的参考点是动态的。由于电流控制环必须跟踪交流电源频率,因此其交叉点可能达数KHz。测试电压控制环    测试较慢的电压控制环和快速的电流控制环需要不同的方法:    PFC 电压控制环 &

15、#160;  电压控制环的测试是比较直接的。不需要对电路进行改动。实际上,在对电压环测试时,电流控制环仍在工作。注入点选择的一般规则在这儿都适用。您可在环中找一个源为低阻抗且信号限制在单条路径的点来注入扰动信号。注入采用的电阻值大约1,000 。    PFC电流控制环    测试较快的电流控制环需要更多考虑和注意,因为需要对电路进行一些变动才能获得对增益和相位裕量的真实评估。    1 利用一个0 至 400-V 直流电源为PFC电路的输入供电。不需要交流电源,并且应该断开。 

16、60;  2 禁止电压控制环工作,但并非整块IC。    3 如果需要,为PFC控制器IC提供一个辅助电源,典型为+18V。    4 利用一个0至10-V直流电源根据输入电压的相应水平来控制PFC输出电流。实际上,0至10V直流电源将控制控制器内的控制增益并代替电压参考(对50或60Hz交流电频率通常每秒变化100至120次)。电流反馈环应当跟踪输入电源,因此利用0至10V直流电流来设定不同的条件。    5 在PFC的输出适加一个可变负载。    6 采用一个1

17、00- 注入电阻连接在电流传感电阻和PFC传感输入之间。    7 从50Hz扫描到约开关频率的一半。检查在第4点和第5点中所描述的不同设置组合情况下的环响应。例如,应该对控制环在零电流、峰值电流和中间状态下进行测试。    在PFC区的测量是危险的。应该确保隔离地和频率-响应分析仪输入通道以及信号发生器,以及后两者。 电磁骚扰传播途径许多电子硬件包含着具有天线能力的元件,例如电缆、印制电路板的印制线、内部连接导线和机械结构。这些元件可以电场、磁场或电磁场方式传输能量并耦合到线路中。在实际应用中,可以通过屏蔽、电缆布局以及距离控制得到

18、改善。地线面或屏蔽面既可以因反射而增大干扰信号,也可以因吸收而衰减干扰信号。电缆之间的耦合既可以是电容性的,也可以是电感性的,这取决于其走向、长度和相互距离。所以,产品如何布置电缆、设计电路板上印制线、内部连接导线,或者增加一些什么辅助措施、如何屏蔽、如何接地、如何控制距离将是改造产品,使之符合EMC认证需要考虑的问题。公共阻抗耦合公共阻抗耦合是由于骚扰源与敏感部位共用一个线路阻抗而产生的。公共阻抗包括:(1)骚扰源和敏感部位共用的导体;(2)由两个电流回路之间的互感耦合;(3)由于两个电压节点之间的电容耦合产生的。理论上,每个节点和每个回路通过空间都能耦合到另一节点和回路。实际上的耦合程度随

19、距离增大急剧下降。(1) 导体连接当骚扰源与敏感部位共用一个地时,则由于骚扰源的输出电流流过公共地阻抗,在敏感部位的输人端产生电压。公共阻抗仅仅是由一段导线或印制板走线产生的。因为导线的阻抗呈感性,因此输出中的高频或高didt分量将更容易耦合。当输出和输入在同一系统时,公共阻抗构成乱真反馈通路,这可能导致振荡。(2) 磁场感应导体中流动的交流电流会产生磁场,这个磁场将与临近的导体耦合,在其上感应出电压。敏感导体中感应电压由下式计算:VM × dILdt式中:M是互感,单位享利。M取决于骚扰源和敏感电路电路的环路面积、方向、距离,以及有两者之间有无磁屏蔽。磁场耦合的等效电路相当于电压源

20、串接在敏感部位的电路中。值得注意是两个电路之间有无直接连接对耦合没有影响,无论两个电路对地是隔离还是连接的,感应电压都是相同的。(3) 电场感应导体上的交流电压产生电场,这个电场与临近的导体耦合,并在其上感应出电压。在敏感导体上感应的电压由下式计算:V = CC × Zin × dVL/dt 式中CC是耦合电容, Zin是敏感电路的对地阻抗。这里假设耦合电容阻抗大大高于电路阻抗。噪声似乎是从电流源注入的,其值为CC×dVLdt。CC的值与导体之间距离、有效面积以及有无电屏蔽材料有关。典型例子是两个平行绝缘导线,间隔0.1英寸时,其耦合电容大约为每米50pF;未屏蔽

21、的中等功率电源变压器的初次级间电容大约为1001000pF。在上述情况中,两个电路都必须连接参考地,这样耦合路径才能完整。但是如果有一个电路未接地,并不意味着没有耦合通路。未接地的电路与地之间存在杂散电容,这个电容与直接耦合电容串联。另外,即使没有任何地线,骚扰源至敏感部位的低电压端之间也存在寄生电容。噪声电流还是能够加到敏感部位,但其值由CC和杂散电容的串联值决定。(4) 负载电阻的影响需要注意的是,磁场和电场耦合的等效电路之间的差异决定了电路负载电阻的变化引起的结果是不同的。电场耦合随RL增加而增大,而磁场耦合随RL增加而减小。这个性质可以用于诊断:比如你在观察耦合电压时,改变RL,你能够

22、推断哪一种耦合模式起主导作用。同样道理,磁场耦合对低阻抗电路的影响更大,而电场耦合对高阻抗电路影响更大。(5) 空间间隔互电容和互感都受骚扰源和敏感导体之间的物理距离的影响。电源耦合所有骚扰能够从骚扰源经电源配电网络进入敏感部位,因两者是连接在一起的。因此对高频不利。尽管从线路上可以容易地预测阻抗,但是在高频时很难精确估算。在电磁兼容试验中,电源的射频阻抗可用50网络并联50H电感近似表示(LISN)。对于较长的距离,在10MHz以下,电源电缆是损耗很低的,特性阻抗约为150200的传输线。然而在任何一个局部配电系统中,因负载连线、电缆接头和配电元件起的骚扰是影响射频传输特性的主要因素。所有这

23、些因素将增加损耗。辐射耦合 (1) 电磁场的产生电场(E场)产生于两个具有不同电位的导体之间。电场的单位为V/m,电场强度正比于导体之间的电压,反比于两导体间的距离。磁场(H场)产生于载流导体的周围,磁场的单位为A/m,磁场正比于电流,反比于离开导体的距离。当交变电压通过网络导体产生交变电流时,产生电磁(EM)波,E场和H场互为正交,同时传播。传播速度由媒介决定;在自由空间等于光速 3×108m/s。在靠近辐射源时,电磁场的几何分布和强度由干扰源特性决定,仅在远处是正交的电磁场。如图11所示。电场强度与磁场强度之比称为波阻抗(图12)。对于任何已知电磁波,波阻抗是一个十分关键的参数,

24、因为它决定了耦合效率,也决定了导体的屏蔽效能。对于远场,d/2,电磁波称为平面波,平面波的阻抗是恒定的,等于自由空间的阻抗:Z0120377在近场,d/2,波阻抗由辐射源特性决定。小电流、高压电辐射体(例如棒)主要产生高阻抗的电场,而大电流、低电压辐射体(例如环)主要产生低阻抗磁场。如果辐射体阻抗正好约377,那么实际在近场就能产生平面波,这取决于辐射体形状。/2附近的区域,或近似六分之一波长的区域,是处于近场和远场之间的传输区域。平面波总是假设是在远场,当分别考虑电场或磁场波时,则假设是在近场。(2) 耦合方式差模、共模和天线模辐射场耦合是电磁兼容的基本概念,在骚扰的发射和入侵耦合方面都起作

25、用。差模考察一根电缆连接起来的两台设备,如图13所示。电缆中两根靠近的导线传输差模(去和回)信号电流。辐射场可以耦合到这个系统,并在两根电线之间感应出差模骚扰;同样,差模电流自身产生辐射场。地参考面(可以是设备外部,也可以是设备的支撑结构)在耦合中不起作用。共模电缆上还会传输共模电流,即电流在每根导线上都以同一方向流动。这些电流通常与信号电流无关。共模电流可以由外部电磁场耦合到由电缆、地参考面和设备与地连接的各种阻抗形成的回路引起。共模电流可以引起内部差模电流,设备对差模电流是敏感的。另外,共模电流也可以由地平面和电缆之间的内部噪声电压引起,这是共模辐射发射的主要原因。需要注意的是,与导线和设

26、备外壳有关的寄生电容和电感是共模耦合回路的主要部分,在很大程度上决定着共模电流的辐度和频谱分布。这些寄生电抗是偶然产生的,而不是设计的,因此控制或预测这些参数比控制或预测那些决定差模耦合的参数,例如电缆的间隔和滤波参数更困难。天线模天线模电流沿电缆和地平面同向传输。天线模电流通常不是由内部噪声的产生,但是当整个系统,包括接地平面,暴露于外场时,天线模电流将会流动。例如:飞机飞入雷达发射的波束区域时;飞机机身作为内部设备的接地平面,它象内部导线一样传输同样的电流。当不同的电流通路上的阻抗不同时,天线模电流会变为差模或共模,这时,天线模就成为系统的辐射场敏感性问题。上拉电阻:1、当TTL电路驱动C

27、OMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。2、OC门电路必须加上拉电阻,才能使用。3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波

28、干扰。上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。3、对于高速电路,过大的上拉电阻可能边沿变平缓。        综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理。对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1 驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。2 下级电路的驱动需求。

29、同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。3 高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。4 频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。下拉电阻的设定的原则和上拉电阻是一样的。OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动

30、电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。当输出高电平时,忽略管子的漏电流,两输入口需200uA,200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系列,设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话

31、概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)                             在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。 1. 电阻作用: 接电组就是为了防止输入端悬空 减弱外部电流对芯片产生的干扰 保护cmos内的保护二极管,一般电流不大于10mA 上拉和下拉、限流 1、改变电平的电位,常用在TTL-CMOS匹配 2、在引脚悬空时有确定的状态 3、增加高电平输出时的驱动能力。 4、为OC门提供电流         那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。         

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论