哈尔滨工程大学 研究生 随机过程课程实验报告~_第1页
哈尔滨工程大学 研究生 随机过程课程实验报告~_第2页
哈尔滨工程大学 研究生 随机过程课程实验报告~_第3页
哈尔滨工程大学 研究生 随机过程课程实验报告~_第4页
哈尔滨工程大学 研究生 随机过程课程实验报告~_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一题: 用PC机产生0,1均匀分布的白色序列 (1) 打印出前50个数 (2) 分布检验 (3) 均值检验 (4) 方差检验 (5) 计算出相关函数源程序:clear;clc;x=rand(1,2000);fprintf('1.输出前50个数:');for i=1:5 j=1:10; X(i,j)=x(i-1)*10+j);endX % 打印出前50个数y1=x(find(x>=0&x<0.1);t(1)=length(y1);y2=x(find(x>=0.1&x<0.2);t(2)=length(y2);y3=x(find(x>

2、=0.2&x<0.3);t(3)=length(y3);y4=x(find(x>=0.3&x<0.4);t(4)=length(y4);y5=x(find(x>=0.4&x<0.5);t(5)=length(y5);y6=x(find(x>=0.5&x<0.6);t(6)=length(y6);y7=x(find(x>=0.6&x<0.7);t(7)=length(y7);y8=x(find(x>=0.7&x<0.8);t(8)=length(y8);y9=x(find(x>

3、=0.8&x<0.9);t(9)=length(y9);y10=x(find(x>=0.9&x<1);t(10)=length(y10) ; fprintf('2.分布检验:');tsubplot(2,1,1);hist(x,10); % 分布检验fprintf('3.均值检验:');EX=mean(x) % 均值检验fprintf('4.方差检验:');DX=var(x) % 方差检验fprintf('5.计算相关函数:');for m=-10:1:10 j=2000-abs(m); for i

4、=1:j C(i)=(x(abs(m)+i)-EX).*(x(i)-EX); end B(m+11)=sum(C)/j;endfor i=1:3 j=1:7; Bx(i,j)=B(i-1)*7+j);endBx % 计算相关函数subplot(2,1,2)m=-10:10;plot(m,B)1.输出前50个数:X = Columns 1 through 8 0.1315 0.6175 0.4759 0.0236 0.8753 0.0960 0.5479 0.0746 0.8483 0.4888 0.4260 0.5609 0.6730 0.1103 0.7614 0.4912 0.5077 0

5、.5892 0.0702 0.0386 0.4879 0.3002 0.0358 0.7934 0.4440 0.4423 0.5000 0.0325 0.0196 0.2932 0.0558 0.7208 0.8507 0.1279 0.4534 0.6225 0.4175 0.6702 0.0820 0.8725 Columns 9 through 10 0.9542 0.2516 0.5314 0.5983 0.5083 0.0165 0.8429 0.5442 0.4153 0.55662.分布检验:t = 210 192 197 202 197 214 198 191 188 211

6、图(1)分布检验3.均值检验:理论值:EX =0.5实际值:EX =0.49914.方差检验:理论值:DX =1/12实际值:DX =0.0839均值和方差表:理论值实际值EX1/20.4991EX21/30.3330DX1/120.08395.计算相关函数:Bx = 0.0022 0.0011 -0.0010 -0.0014 -0.0013 0.0034 -0.0051 -0.0026 0.0018 -0.0019 0.0838 -0.0018 0.0019 -0.0025 -0.0051 0.0033 -0.0014 -0.0015 -0.0013 0.0009 0.0020图(2)相关函

7、数第二题:用PC机产生分布的正态序列(1)打印出前50个数(2)分布检验(3)均值检验(4)方差检验(5)计算出相关函数源程序:clear;clc;x=randn(1,2000);fprintf('1.输出前50个数:');for i=1:5 j=1:10; X(i,j)=x(i-1)*10+j);endX % 打印出前50个数y1=x(find(x>=0&x<0.1);t(1)=length(y1);y2=x(find(x>=0.1&x<0.2);t(2)=length(y2);y3=x(find(x>=0.2&x<

8、0.3);t(3)=length(y3);y4=x(find(x>=0.3&x<0.4);t(4)=length(y4);y5=x(find(x>=0.4&x<0.5);t(5)=length(y5);y6=x(find(x>=0.5&x<0.6);t(6)=length(y6);y7=x(find(x>=0.6&x<0.7);t(7)=length(y7);y8=x(find(x>=0.7&x<0.8);t(8)=length(y8);y9=x(find(x>=0.8&x<

9、0.9);t(9)=length(y9);y10=x(find(x>=0.9&x<1);t(10)=length(y10) ; fprintf('2.分布检验:');tsubplot(2,1,1);hist(x,10); % 分布检验fprintf('3.均值检验:');EX=mean(x) % 均值检验fprintf('4.方差检验:');DX=var(x) % 方差检验fprintf('5.计算相关函数:');for m=-10:1:10 j=2000-abs(m); for i=1:j C(i)=(x(a

10、bs(m)+i)-EX).*(x(i)-EX); end B(m+11)=sum(C)/j;endfor i=1:3 j=1:7; Bx(i,j)=B(i-1)*7+j);endBx % 计算相关函数subplot(2,1,2)m=-10:10;plot(m,B)1.输出前50个数:X = Columns 1 through 8 -1.0457 -1.0045 -0.7384 -0.9445 -0.1354 -0.4226 1.5979 -0.3811 0.3409 0.5486 -1.0160 -1.6335 -1.8104 -0.0349 0.6758 -0.8909 -0.9381 -1

11、.5436 0.1596 -0.3688 -1.0122 0.1134 0.8850 -0.5823 -0.3197 1.6065 1.0613 0.3005 0.3511 0.9522 -0.6329 -0.8587 -0.0243 0.9170 -0.5015 -0.2513 1.6728 -1.3644 -0.3351 1.2946 Columns 9 through 10 0.2348 -0.3093 -1.8913 2.2175 -0.7176 -0.6733 1.7461 -0.55610.4811 -0.25202.分布检验:t =71 81 70 78 66 62 71 71

12、58 49图(3)分布检验3.均值检验:理论值:EX =0实际值:EX = -0.00544.方差检验:理论值:DX =1实际值:DX = 0.9916均值和方差表:理论值实际值EX0-0.0054DX170.99165.计算相关函数:Bx = -0.0097 -0.0258 -0.0077 0.0131 0.0244 -0.0224 0.0590 0.0228 0.0272 0.0208 0.9911 0.0212 0.0271 0.0224 0.0588 -0.0223 0.0238 0.0125 -0.0083 -0.0255 -0.0082图(4)相关函数第三题:设为正态白色序列,服从

13、分布,求(1) (2) (3) (4) ,并画出(m)图源程序:clfclearp=randn(1,1001);k=2:1001;x=p(k)+4.*p(k-1);m=mean(x)m1=mean(x.2)s=m1-m.2for i=-10:10l=0;p=1000-abs(i);for k=1:pl=l+x(k+abs(i)-m*x(k)-m;endb(i+11)=l/p;endi=-10:10;plot(i,b) 1. 均值EX:理论值:EX =0实际值:EX =-0.02092.均方值: EX2:理论值:EX2= 17实际值:EX2= 16.39993. 方差DX:理论值:DX = 17

14、实际值:DX = 16.3995均值和方差表:理论值实际值EX0-0.0290EX21716.3999DX1716.39954. 相关函数:(m) = 0.1462 0.6689-0.03190.14730.1085-0.37090.22990.67210.12144.441816.8904 4.44180.12140.67210.2299-0.37090.10850.1473-0.03190.66890.1462图(5) 相关函数第四题:设,k=0,1,2,为N(0,1)正态白序列,N(0,1) 令,=1,2,1000; 。求:;源程序:clfclear;x0=0;for i=1:1000;

15、x(1,i)=-0.707*x0+randn;x0=x(1,i);endm=mean(x(:,100:end)m1=mean(x(:,100:end).2)s=m1-m.2for i=-10:10l=0;p=1000-abs(i);for k=1:pl=l+x(k+abs(i)-m*x(k)-m;endb(i+11)=l/p;endi=-10:10;plot(i,b)1.均值 EX:理论值:EX =0实际值:EX = 0.00272. 均方值:EX2:理论值:EX2= 2实际值:EX2= 1.96163.方差 DX:理论值:DX = 2实际值:DX = 1.9616均值和方差表:理论值实际值E

16、X00.0027EX221.9616DX21.96164. 相关函数 (m):图(6)相关函数第五题,=2,=1/2,取采样周期=/2,=2/=4满足采样定理:,N=5,10,20。 比较与。源程序:X='sin(t)' subplot(2,1,1); ezplot(X);Buchang=0.05;N=10; m=1;for t=-2*pi:Buchang:2*pisum=0;for n=(0-N):Nsum=sum+(sin(n*pi/2)*sin(t-pi*n/2)/(t-n*pi/2); endY(m)=sum; m=m+1;endt=-2*pi:Buchang:2*pi

17、;hold onplot(t,Y,':');title('N取10时的比较图形');subplot(2,1,2); ezplot(X);N=20; m=1;for t=-2*pi:Buchang:2*pisum=0;for n=(0-N):Nsum=sum+(sin(n*pi/2)*sin(t-pi*n/2)/(t-n*pi/2); endY(m)=sum; m=m+1;endt=-2*pi:Buchang:2*pi;hold onplot(t,Y,':');title('N取20时的比较图形');X(t)图形用实线表示;Y(t)

18、 图形用虚线表示;结果如下图:图(7)第六题:,求:(1) 列出Astrom表(2) 判别稳定性(3) 若稳定:?源程序:A=zeros(40,21);k=zeros(1,20);for i=1:21A(1,i)=2*i-1;endfor j=1:20if mod(j,2)=1;A(2,j)=A(1,j+1);elseA(2,j)=0;end;end;k(1)=A(1,1)/A(2,1);for i=3:40if mod (i,2)=1;for j=(i+1)/2:2:20;A(i,j)=A(i-2,j);if j=20;A(i,j+1)=A(i-2,j+1)-A(i-1,j+1)*k(i-1

19、)/2);elseA(i,j+1)=41;end;endelsefor j=i/2:2:20A(i,j)=A(i-1,j+1);end;k(i/2)=A(i-1,i/2)/A(i,i/2);end;end;disp(A)disp(k)(1) 列出Astrom表Columns 1 through 8 1.0000 3.0000 5.0000 7.0000 9.0000 11.0000 13.0000 15.0000 3.0000 0 7.0000 0 11.0000 0 15.0000 0 0 3.0000 2.6667 7.0000 5.3333 11.0000 8.0000 15.0000

20、0 2.6667 0 5.3333 0 8.0000 0 10.6667 0 0 2.6667 1.0000 5.3333 2.0000 8.0000 3.0000 0 0 1.0000 0 2.0000 0 3.0000 0 0 0 0 1.0000 0 2.0000 0.0000 3.0000 0 0 0 0 0 0.0000 0 0.0000 0 0 0 0 0 -Inf 0.0000 -Inf 0 0 0 0 -Inf 0 -Inf 0 0 0 0 0 0 -Inf NaN -Inf 0 0 0 0 0 NaN 0 NaN 0 0 0 0 0 0 NaN NaN 0 0 0 0 0 0

21、 NaN 0 0 0 0 0 0 0 0 NaN 0 0 0 0 0 0 0 NaN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22、 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 9 through 16 17.0000 19.0000 21.0000 23.0000 25.0000 27.0000 29.0000 31.0000 19.0000 0 23.0000 0 27.0000 0 31.0000 0 10.6667 19.0000 13.3333 23.0000 16.0000 27.0000

23、18.6667 31.0000 0 13.3333 0 16.0000 0 18.6667 0 21.3333 10.6667 4.0000 13.3333 5.0000 16.0000 6.0000 18.6667 7.0000 4.0000 0 5.0000 0 6.0000 0 7.0000 0 0.0000 4.0000 0 5.0000 0.0000 6.0000 0.0000 7.0000 0 0 0 0.0000 0 0.0000 0 0 0.0000 NaN 0 -Inf 0.0000 -Inf 0.0000 NaN NaN 0 -Inf 0 -Inf 0 NaN 0 NaN

24、NaN NaN -Inf NaN -Inf NaN NaN 0 NaN 0 NaN 0 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN 0 NaN 0 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN 0 NaN 0 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN NaN NaN NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN NaN

25、NaN 0 0 NaN 0 NaN 0 NaN 0 0 0 0 NaN NaN NaN NaN NaN 0 0 0 NaN 0 NaN 0 NaN 0 0 0 0 NaN NaN NaN NaN 0 0 0 0 NaN 0 NaN 0 0 0 0 0 0 NaN NaN NaN 0 0 0 0 0 NaN 0 NaN 0 0 0 0 0 0 NaN NaN 0 0 0 0 0 0 NaN 0 0 0 0 0 0 0 0 NaN 0 0 0 0 0 0 0 NaN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26、0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 17 through 21 33.0000 35.0000 37.0000 39.0000 41.0000 35.0000 0 39.0000 0 0 21.3333 35.0000 24.0000 39.0000 41.0000 0 24.0000 0 41.0000 0 21.3333 8.0000 24.0000 -7.1250 0 8.0000 0 -7.1250 0 0 0 8.0000 43.0000 -7.1250 41.0000 0 43.

27、0000 0 41.0000 0 0 -Inf 43.0000 -Inf 0 -Inf 0 -Inf 0 0 NaN -Inf NaN -Inf 41.0000 0 NaN 0 41.0000 0 NaN NaN NaN NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN 41.0000 0 NaN 0 41.0000 0 NaN NaN NaN NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN 41.0000 0 NaN 0 41.0000 0 NaN NaN NaN NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN 41.00

28、00 0 NaN 0 41.0000 0 NaN NaN NaN NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN 41.0000 0 NaN 0 41.0000 0 NaN NaN NaN NaN 0 NaN 0 NaN 0 0 NaN NaN NaN NaN 41.0000 0 NaN 0 41.0000 0 NaN NaN NaN NaN 0 NaN 0 NaN 0 0 0 NaN NaN NaN 41.0000 0 NaN 0 41.0000 0 0 0 NaN NaN 0 0 0 NaN 0 0 0 0 0 NaN 41.0000 0 0 0 41.0000 0

29、 Columns 1 through 8 0.3333 1.1250 2.6667 Inf 0 NaN NaN NaN Columns 9 through 16 NaN NaN NaN NaN NaN NaN NaN NaN Columns 17 through 20 NaN NaN NaN NaN(2) 判别稳定性:由奥斯特姆表可以看出系统不稳定。(3) 第七题:已知如下图所示的离散系统,其中,求(1) 列出Astrom表(2) 判别稳定性(3) =?源程序:A1=1 0 -0.01;B1=1 0.5 0.6;F=conv(conv(A1,A1),B1); %卷积求多项式系数As=zeros

30、(13,7);As(1,1:7)=F;Bs=zeros(13,7);Bs(1,6)=1;Bs(1,7)=-0.5500;aK=zeros(1,6);bK=zeros(1,6);for j=1:7As(2,j)=As(1,7-j+1);Bs(2,j)=As(2,j);end;aK(1,1)=As(1,7)/As(2,7);bK(1,1)=Bs(1,7)/Bs(2,7);for i=3:13if mod(i,2)=1 %奇数行元素for j1=1:7-(i-1)/2;As(i,j1)=As(i-2,j1)-As(i-1,j1)*aK(i-1)/2);Bs(i,j1)=Bs(i-2,j1)-Bs(i

31、-1,j1)*bK(i-1)/2);end else %偶数行元素for j2=1:(7-(i-2)/2);As(i,j2)=As(i-1,7-(i-2)/2-j2+1);Bs(i,j2)=As(i,j2);end;aK(i/2)=As(i-1,7-(i-2)/2)/As(i,7-(i-2)/2); bK(i/2)=Bs(i-1,7-(i-2)/2)/Bs(i,7-(i-2)/2);endend%求取系统输出方差s=0;for i=1:2:11s=s+Bs(i,7-(i-1)/2)2/Bs(i+1,7-(i-1)/2);ends=s+Bs(13,1)2/As(13,1);s=s/As(1,1)disp(As)disp(aK)disp(Bs)disp(bK)(1) 列出Astrom表A表: 1.0000 0.50

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论