全等三角形判定SSSPPT精品文档_第1页
全等三角形判定SSSPPT精品文档_第2页
全等三角形判定SSSPPT精品文档_第3页
全等三角形判定SSSPPT精品文档_第4页
全等三角形判定SSSPPT精品文档_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、11.2 三角形全等的条件三角形全等的条件(一一)11、 全等三角形的定义全等三角形的定义能够完全重合的两个三角形叫能够完全重合的两个三角形叫全等三角形全等三角形。2、 全等三角形有什么性质?全等三角形有什么性质?问题问题1:其中相等的边有:其中相等的边有:问题问题2:其中相等的角有:其中相等的角有:AB=DE, BC=EF, AC=DFA=D, B=E, C=F如图如图,已知已知ABC DEFABCDEF(全等三角形的对应边相等)全等三角形的对应边相等)(全等三角形的对应角相等(全等三角形的对应角相等)2 3.在在ABC 与与ABC中中,若若AB=AB,BC=BC,AC=AC,A=A, B=

2、B, C=C,那么那么ABC 与与ABC全等吗全等吗?具备三条边对应相等三条边对应相等,三个角对应相等三个角对应相等的两个三角形全等ABCABC思考思考:要使两个三角形全等要使两个三角形全等,是否一定要六个条件呢是否一定要六个条件呢?想一想想一想3满足下列条件的两个三角形是否一定全等:(1)一个条件(2)两个条件(3)三个条件一边一角两边一边一角两角三角三边两边一角两角一边4 8cm 8cm5满足下列条件的两个三角形是否一定全等:一边一角两边一边一角两角三角三边两边一角两角一边(1)一个条件(2)两个条件(3)三个条件64004007满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两

3、角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。(1)一个条件(2)两个条件(3)三个条件83009cm3009cm3009cm3009cm3009cm9满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。(1)一个条件(2)两个条件(3)三个条件1030050030050011满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两

4、个三角形两个三角形不一定不一定全等。全等。(1)一个条件(2)两个条件(3)三个条件12 8cm 9cm 8cm 9cm13满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。只有两个条件对应相只有两个条件对应相等的两个三角形等的两个三角形不一不一定定全等。全等。(1)一个条件(2)两个条件(3)三个条件14 65度度35度度80度度65度度35度度80度度15满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一

5、个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。只有两个条件对应相只有两个条件对应相等的两个三角形等的两个三角形不一不一定定全等。全等。(1)一个条件(2)两个条件(3)三个条件16 8cm 6cm 9cm 8cm 6cm 9cm17满足下列条件的两个三角形是否一定全等:一个条件两个条件三个条件一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。只有两个条件对应相只有两个条件对应相等的两个三角形等的两个三角形不一不一定定全等。全等。18结论结论: :三边对应相等的两个三角形全等三边对应相等的两个三角

6、形全等. .可简写为边边边或可简写为边边边或SSSSSS19如何用符号语言来表达呢如何用符号语言来表达呢?在在ABC与与DEF中中ABCDEFAB=DEAC=DFBC=EFABC DEF(SSS)20例例1 已知:如图,已知:如图,AB=AD,BC=CD, 求证求证:ABC ADCABCDACAC ( ) AB=AD ( )BC=CD ( ) ABC ADC(SSS)证明:在证明:在ABC和和ADC中中=已知已知已知已知 公共边公共边判断两个三角形全等的推理过程,叫做证明三角形判断两个三角形全等的推理过程,叫做证明三角形全等。全等。21 例例2. 如下图,如下图,ABC是一个钢架,是一个钢架,

7、 AB=AC,AD是连接是连接A与与BC中点中点D的支架。的支架。 求证:求证: ABD ACD分析:分析:要证明要证明 ABD ACD,首先要看这两个三角形的三条边首先要看这两个三角形的三条边是否对应相等。是否对应相等。证明证明: D是是BC中点,中点, BD=CD. AB=AC, BD=CD, AD=AD, ABD ACD(SSS)在在ABD和和 ACD中中,22ACBD证明:证明:D是是BC的中点的中点BD=CD在在ABD与与ACD中中AB=AC(已知)(已知)BD=CD(已证)(已证)AD=AD(公共边)(公共边)ABD ACD(SSS)例例3 如图如图, ABC是一个钢架,是一个钢架

8、,AB=AC,AD是连接是连接A与与BC中点中点D的支架,求证:的支架,求证: ABD ACD求证:求证:B=C,B=C,232021-12-17图图1例例4 4:已知:如图:已知:如图1 1 ,AC=FEAC=FE,AD=FB,BC=DEAD=FB,BC=DE求证:求证:ABCABCFDE FDE 证明:证明: AD=FBAD=FB AB=FD AB=FD(等式性质)(等式性质) 在在ABCABC和和FDE FDE 中中AC=FEAC=FE(已知)(已知)BC=DEBC=DE(已(已知知)AB=FDAB=FD(已证)(已证)ABCABCFDEFDE(SSSSSS)求证:求证:C=E C=E

9、,AcEDBF=?。(2) ABC FDE(已证)(已证) C=E (全等三角形的对应角相等)(全等三角形的对应角相等) 求证:求证:DEBCDEBC242021-12-17 已知已知AC=FE,BC=DE,点,点A,D,B,F在在一条直线上,一条直线上,AD=FB(如图),要用(如图),要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?以外,还应该有什么条件?怎样才能得到这个条件?怎样才能得到这个条件?解:要证明解:要证明ABC FDE,还应该有还应该有AB=FD这个条件这个条件 DB是是AB与与FD的公共部分,的公共部分,且

10、且AD=BF AD+DB=BF+DB 即即 AB=DF25准备条件:证全等时要用的间接准备条件:证全等时要用的间接条件要先证好;条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:26 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD。CABDE在在 AEB和和 ADC中,中,AB=ACAE=ADBE=CD AEB ADC (sss)27练习练习3、如图

11、,在四边形、如图,在四边形ABCD中,中,AB=CD,AD=CB,求证:求证: A= C. DABC 证明:在证明:在ABD和和CDB中中AB=CDAD=CBBD=DBABD ACD(SSS)(已知)(已知)(已知)(已知)(公共边)(公共边) A= C (全等三角形的对应角相等)(全等三角形的对应角相等)你能说明你能说明ABCD,ADBC吗?吗?28练习:练习:1、如图,、如图,ABAC,BDCD,BHCH,图中有几组全等的三角形?它们全等,图中有几组全等的三角形?它们全等的条件是什么?的条件是什么?HDCBA解:有三组。解:有三组。在在ABH和和ACH中中 AB=AC,BH=CH,AH=AHABH ACH(SSS););BD=CD,BH=CH,DH=DHDBH DCH(SSS)在在ABH和和ACH中中AB=AC,BD=CD,AD=ADABD ACD(SSS););在在ABH和和ACH中中29BCBCBCBCDCBBF=DC 或或 BD=FCA ABCD练习练习2。解:解: ABCDCB理由如下:理由如下:AB = CDAC = BD=ABD ( ) S S S S S S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论