




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比拟强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目例1等差数列是递增数列,前n项和为,且成等比数列,求数列的通项公式.解:设数列公差为成等比数列,即, 由得:,点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差公比后再写出通项。二、公式法假设数列的前项和与的关系,求数列的通项可用公式求解。例2数列的前项和满足求数列的通项公式。解:由当时,有,经验
2、证也满足上式,所以点评:利用公式求解时,要注意对n分类讨论,但假设能合写时一定要合并三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。类型1 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。(全国卷i.22)数列中,其中,求数列的通项公式。p24styyj例3. 数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2 1递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。(全国卷i.15)数列an,满足a1=1,an=a1+2a2+3a3+(
3、n1)an1(n2),那么an的通项 p24styyj例4. 数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,2由和确定的递推数列的通项可如下求得:由递推式有, ,依次向前代入,得,简记为 ,这就是叠迭代法的根本模式。3递推式:解法:只需构造数列,消去带来的差异例5设数列:,求.解:设,将代入递推式,得那么,又,故代入得说明:1假设为的二次式,那么可设;(2)此题也可由 ,两式相减得转化为求之.例6, ,求。解: 。类型3 递推公式为其中p,q均为常数,。解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。(.重庆.14在数列中,假设,那么该数列的通项 类型4
4、递推公式为其中p,q均为常数,。 或,其中p,q, r均为常数全国i.22本小题总分值12分设数列的前项的和,求首项与通项; 解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以,得:引入辅助数列其中,得:再应用类型3的方法解决。例8. 数列中,,,求。解:在两边乘以得:令,那么,应用例7解法得:所以类型5 递推公式为其中p,q均为常数。解法:先把原递推公式转化为其中s,t满足,再应用前面类型3的方法求解。.福建.理.22本小题总分值14分数列满足i求数列的通项公式; 例9. 数列中,,,求。解:由可转化为即或这里不妨选用当然也可选用,大家可以试一试,那么是以首项为,公比为的等比
5、数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。类型6 递推公式为与的关系式。(或)解法:利用进行求解。(.陕西.20) (本小题总分值12分) 正项数列an,其前n项和sn满足10sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an 例10. 数列前n项和.1求与的关系;2求通项公式.解:1由得:于是所以.2应用类型4的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以类型7 双数列型解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。例11. 数列中,;数列中,。当时,,,求,.解:因所以即1又
6、因为所以.即2由1、2得:, 四、待定系数法构造法求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列等差或等比数列来求解,这种方法表达了数学中化未知为的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法。1、通过分解常数,可转化为特殊数列a+k的形式求解。一般地,形如a=p a+qp1,pq0型的递推式均可通过待定系数法对常数q分解法:设a+k=pa+k与原式比拟系数可得pkk=q,即k=,从而得等比数列a+k。例12、数列a满足a=1,a=a+1n2,求数列a的通项公式。解:由a=a+1n2得a2=
7、a2,而a2=12=1,数列 a2是以为公比,1为首项的等比数列a2= a=2说明:这个题目通过对常数1的分解,进行适当组合,可得等比数列 a2,从而到达解决问题的目的。例13、数列a满足a=1,,求数列a的通项公式。解:由得设a,比拟系数得解得是以为公比,以为首项的等比数列例14数列满足,且,求解:设,那么,是以为首项,以3为公比的等比数列点评:求递推式形如p、q为常数的数列通项,可用迭代法或待定系数法构造新数列来求得,也可用“归纳猜测证明法来求,这也是近年高考考得很多的一种题型例15数列满足, ,求解:将两边同除,得设,那么令条件可化成,数列是以为首项,为公比的等比数列因,点评:递推式为p
8、、q为常数时,可同除,得,令从而化归为p、q为常数型2、通过分解系数,可转化为特殊数列的形式求解。这种方法适用于型的递推式,通过对系数p的分解,可得等比数列:设,比拟系数得,可解得。.福建.文.22本小题总分值14分数列满足i证明:数列是等比数列;ii求数列的通项公式;例16、数列满足=0,求数列a的通项公式。分析:递推式中含相邻三项,因而考虑每相邻两项的组合,即把中间一项的系数分解成1和2,适当组合,可发现一个等比数列。解:由得即,且是以2为公比,3为首项的等比数列利用逐差法可得 = = = =例17、数列中,求数列的通项公式。解:由得设比拟系数得,解得或假设取,那么有是以为公比,以为首项的
9、等比数列由逐差法可得=说明:假设此题中取,那么有即得为常数列, 故可转化为例13。五、特征根法1、设数列的项满足,其中求这个数列的通项公式。作出一个方程那么当时,为常数列,即,其中是以为公比的等比数列,即.例19数列满足:求解:作方程当时,数列是以为公比的等比数列.于是2、对于由递推公式,给出的数列,方程,叫做数列的特征方程。假设是特征方程的两个根,当时,数列的通项为,其中a,b由决定即把和,代入,得到关于a、b的方程组;当时,数列的通项为,其中a,b由决定即把和,代入,得到关于a、b的方程组。例20:数列满足,求数列的通项公式。解法一待定系数迭加法由,得,且。那么数列是以为首项,为公比的等比
10、数列,于是。把代入,得,。把以上各式相加,得。解法二特征根法:数列:, 的特征方程是:。,。又由,于是故3、如果数列满足以下条件:的值且对于,都有其中p、q、r、h均为常数,且,那么,可作特征方程,当特征方程有且仅有一根时,那么是等差数列;当特征方程有两个相异的根、时,那么是等比数列。(.重庆.文.22)本小题总分值12分数列求数列的通项公式. 解:由,得,其特征方程为,解之,得,。例21、数列满足性质:对于且求的通项公式. 解: 数列的特征方程为变形得其根为故特征方程有两个相异的根,使用定理2的第2局部,那么有即例22数列满足:对于都有1假设求2假设求3假设求4当取哪些值时,无穷数列不存在?
11、解:作特征方程变形得特征方程有两个相同的特征根依定理2的第1局部解答.(1)对于都有(2) 令,得.故数列从第5项开始都不存在,当4,时,.(3)令那么对于(4)、显然当时,数列从第2项开始便不存在.由此题的第1小题的解答过程知,时,数列是存在的,当时,那么有令那么得且2.当其中且n2时,数列从第项开始便不存在.于是知:当在集合或且2上取值时,无穷数列都不存在.说明:形如:递推式,考虑函数倒数关系有令那么可归为型。(取倒数法)例23:解:取倒数:是等差数列,六、构造法 “构造.假设条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉.1、构造等差数
12、列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,假设能构造等差数列或等比数列,无疑是一种行之有效的构造方法.例24: 设各项均为正数的数列的前n项和为,对于任意正整数n,都有等式:成立,求的通项an.解:, ,. 即是以2为公差的等差数列,且.例25: 数列中前n项的和,求数列的通项公式.解:当n2时,令,那么,且是以为公比的等比数列,.2、构造差式与和式解题的根本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.例26: 设是首项为1的正项数列,且,nn*,求数列的通项公式an.解:由题设得.,.例27: 数列中,且,nn*,求通项公式.解:nn*3、构造商式与积式构造数列相邻两项的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物理测试题大全及答案
- 教育教学改进与反思结合的试题及答案
- 能量转化理论试题及答案2025
- 英语试题30题及答案
- 零售电商行业无人货架技术发展趋势报告
- 新能源汽车行业的国际合作试题及答案在2025年
- 新能源汽车的基础设施建设研究试题及答案
- 教师教育教学反思与改进策略的实施路径讨论试题及答案
- 未来家具设计文化与科技的碰撞试题及答案
- 安健环知识试题及答案
- 陕西省西安市西北工业大学2025届高三第五次模拟考试英语试卷含解析
- 全国AEFI监测方案
- 轻型载货汽车制动器设计
- 高考语文120个重点文言实词
- 江苏省粮食集团招聘笔试题库2024
- 2023年全国职业院校技能大赛-老年护理与保健赛项规程
- 2024年深圳市彩田学校初中部小升初入学分班考试数学模拟试卷附答案解析
- 2024年安徽安庆市交通控股集团有限公司招聘笔试冲刺题(带答案解析)
- 《沙龙培训》课件
- 充电桩四方协议书范本
- 中考英语情景交际和看图写话
评论
0/150
提交评论