2020年中考数学专题:和图形有关的应用题_第1页
2020年中考数学专题:和图形有关的应用题_第2页
2020年中考数学专题:和图形有关的应用题_第3页
2020年中考数学专题:和图形有关的应用题_第4页
2020年中考数学专题:和图形有关的应用题_第5页
免费预览已结束,剩余7页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题:与图形有关的应用题1.如图所示的是可调节高低的笔记本电脑桌,如图,桌子腿AB = AC=26 cm,/ABC = 34。,则点A距地面的高度AH约为 cm.(结果保留一位小数,参考数据:sin34 & 0.56, cos34 2 0.83, tan34 为0.67)田2 . 2019年10月1日,迎来了伟大祖国 70周年的生日.某市为弘扬新一代爱国主义精神,建立如图所示的一座纪念渡江战役胜利的历史博物馆.如图是该博物馆的侧面示意图.某学校数学兴趣小组通过测量得知,纪念馆外轮廓斜坡AB的坡度i = 1 :/,底基BC=50 m, /ACB=135°,则馆顶 A离地面BC的

2、距离约为 m_(结果精确到0.1 m, 参考数据: 建=1.41, 731.73)田3 .为响应“节能减排,绿色出行”的口号,某市在部分城区实施公共自行车免费服务.图是公共自行车的实物图,图是公共自行车的车架示意图,点A、D、C、E在同一条直线上, CD = 35 cm, DF = 24 cm, AF = 30 cm , FD LAE 于点 D,座杆 CE= 15 cm , 且/ EAB =75°则E到AB的距离约为 cm.(结果保留整数,参考数据:sin75 % 0.97, cos75 人 0.26, tan75 23.73)4 .如图,是某班放报纸的支架,图为其示意图,其侧面垂直

3、于地面的支架(含轮子)为AB,弯折的两条支架分别为AD, DC,且CD垂直地面于点 C,经测量,AD=256 cm,CD = 44 cm, /ADC=153°求线段AB的长度约为 cm.(结果保留一位小数,参考数 据:sin63 5 0.89, cos63°0.45, tan63 5 1.96)圉5 .如图,桔榻是一种旧式提水器具,它的工作原理是由于杠杆末端的重力作用,便 能轻易把水提拉至所需处,桔棒早在春秋时期就已相当普遍,而且延续了几千年.如图, 是一个桔棒模型示意图,已知 AB的长为0.8 m, AB与水平面的角度为 32.5 °,点B距底座 表面CF的距离

4、为0.36 m,底座的高度为 6 cm.则点A到地面的高度约为 m_(结果 保留一位小数,参考数据:sin32.5 为 0.54, cos32.5 % 0.84, tan32.5 2 0.64)6 .港珠澳大桥是中国境内一座连接香港、珠海和澳门的桥隧工程,位于中国广东省伶 仃洋区域内,为珠江三角洲地区环线高速公路南环段,青州航道桥“中国结三地同心”主题的斜拉索塔如图所示.某数学兴趣小组根据材料编制了如下数学问题,请你解答.如图,BC, DE为主塔AB(主塔AB与桥面AC垂直)上的两条钢索,桥面上 C、D两点间的距 离为16 m,主塔上A、E两点的距离为18.4 m,已知BC与桥面AC的夹角为3

5、0°, DE与桥 面AC的夹角为38°,求主塔AB的高约为 m,(结果精确到1米,参考数据:sin38 % 0.6,cos38 0.8, tan38 2 0.8, V3=1.7)图图;7 .如图,高铁列车座位后面的小桌板收起时可以近似地看作与地面垂直,展开小桌板 后,桌面会保持水平,其中图、图分别是小桌板收起时和展开时的实物图,图中的实 线是小桌板展开后的示意图,其中OB表示小桌板桌面的宽度,BC表示小桌板的支架,连接OA,此时 OA = 75 cm, Z AOB = Z ACB = 37°,且支架长 BC与桌面宽 OB的长度之和等 于OA的长度,则点 B到AC的

6、距离约为 cm.(结果保留一位小数,参考数据: sin37 曲 0.6, cos37 2 0.8, tan37 2 0.75)国图图8 .图是一台实物投影仪,图是它的示意图,折线 B AO表示固定支架,AO垂 直水平桌面OE于点。,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探 头CD始终垂直于水平桌面 OE,经测量:AO = 6.8 cm, CD =8 cm, AB=30 cm, BC= 35 cm. 如图,当/ ABC = 70° , BC/OE时,投影探头的端点D到桌面 OE的高度约为cm.(结果精确到 0.1,参考数据:sin70 曲 0.94, cos70 为

7、0.34, tan70 22.75)国图9 .改革开放以来,中国已经成为领先世界的基建强国,如图是建筑工地常见的塔吊,其主体部分的平面示意图如图,点F在线段HG上运动,BC / HG,AE±BC,垂足为点E,AE 的延长线交 HG 于点 G,经测量,/ABD = 11°, Z ADE = 26°, Z ACE = 31 °, BC=20 m, EG = 0.6 m.(1)求线段AG的长度;(2)连接AF,当线段AFLAC时,求点F和点G之间的距离.(结果精确到0.1 m,参考 数据:tan11°= 0.19, tan2650.49, tan31

8、 %0.60)图图10 .在伟大祖国诞辰 70周岁之际,在太原市的大街小巷随处可见国旗装点,鲜艳的五星红旗不仅扮靓了城市的街道,更让市民感受到了浓厚的节日氛围.已知国旗 (3号旗)的长DE 为192 cm,宽DC为129 cm,旗杆 DB的长度为200 cm, DB与墙面 AB的夹角/ DBG为 35。,当国旗迎风展开后,点E到墙壁AB所在直线的距离约为 cm.(结果精确到0.1, 参考数据:sin35 % 0.57, cos35°0.82, tan35 % 0.70)11 .如图,是一个由空心壳体和一个实心的半球体构成的不倒翁,图是它的部分示意图,已知圆弧的圆心为点 O, CD长为

9、30 cm, OA, OB为圆弧的半径,长为10 cm, / AOC=/ BOC, AB的长为4 71cmi当CD向右摆动使点 B落在地面上(即圆弧与直线相切于点B)时,则点D到直线l的距离约为 cm.(结果精确到1 cm,参考数据:sin36 %0.59, cos36%0.81, tan36 2 0.73, *=1.73)12 .如图是一座可供行人和非机动车行走的过路天桥的实物图,该天桥的一端是由一个四边形和两个三角形组成,如图所示.其中AC和BC是非机动车行走的缓坡道,AB是行人走的台阶式坡道,BD和CE是天桥的立柱,D为AE的中点.经测量,天桥的高度(天桥最高点到地面的距离)为6米,非机

10、动车坡道与水平面的夹角为11.5 °, BC与AC的夹角为23°,求坡道 AB的长度约为 米.(结果保留一位小数,参考数据:sin11.520.20 ,cos11.5 为 0.98, tan11.5 & 0.20, sin23 为 0.39, cos23 0.92, tan23 为 0.42, 南5.83)13 .如图是某种躺椅的实物图, 图是其简化的结构示意图, 已知扶手AB与座板CD 都平行于地面,靠背 DM与支架OE平行,前支架 OE与后支架OF垂直,且分别与 CD交 于点 G 和点 D, AB 与 DM 交于点 N, Z ODC =30°, ON

11、= 40 cm, GE = 30 cm, MN = 60 cm. 则这种躺椅的高度约为 cm(即点M到地面的高度).(结果取整数,参考数据: 巾= 1.73)国甩14 .某车库出口处设置有“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的连接点,当车辆经过时,栏杆 AEF升起后的位置如图所示(图为其几何图形).其中ABXBC, DC ± BC, EF/BC, /EAB=150°, AB=AE=1.2 m, BC=2.4 m,求图中点 E 到地面的高度(即EH的长)为 m_(结果精确到0.01 m,参考数据:3=1.732,栏杆宽度忽略不计)15 .如图是一个创意半圆桌柜

12、实物图,图是其正面示意图,桌柜的上部是一个半圆,桌面AB是半圆的直径,隔层 CD是半圆的弦,柜脚 EG、FH所在的直线经过圆心, EG = FH ,且AB、CD均平行于水平地面,某同学测得GH= 100 cm, Z EGH = Z FHG =60°,弧EF最底端与地面的距离为 2 cm.则桌面AB的长度为 cm.田图16 .图是一个仰卧起坐健身器,它主要是由支架、坐垫、靠背和档位调节器组成.将 图仰卧起坐健身器的主体部分抽象成图,靠背OD与支架OA所夹的角a可以用档位调节器绕点O调节,量得OA=OD = 900 mm, Z CAB = 20°,当靠背的角度 a调到400时,

13、点D到地面的距离约为 mm.(结果精确到 0.1 mm,参考数据:sin20曲0.34,cos20、0.94,tan20 2 0.36,sin40 & 0.64, cos40 2 0.77, tan40 2 0.84)图图40米,17 .图是某游乐场的摩天轮,图是它的正面示意图,已知摩天轮的半径为每分钟绕圆心。匀速旋转15°,其最低点A离地面的距离 AB为5米,小明从点A处登上摩天轮,5分钟后旋转到点 C,此时他离地面的高度 CD约为 米.(结果精确到0.1米,参考数据:sin75 % 0.97, cos75°=0.26, tan75 % 3.73)图参考答案18

14、14.6 【解析】 由题意得,在 RtABH 中,AH = AB sin3务26X 0.56= 14.6 cm.19 68.3 【解析】 如解图,过点 A作AD,BC交BC的延长线于点 D. < / ACB= 135 °, ./ACD=45°,ADC 为等腰直角三角形,设 AD = x,则 CD = x, BD=50+x,二斜坡AB 的坡度 i=1 :,,x : (50+x)=1 :也,整理得 电1)x= 50,解得 x= 25(时 + 1) = 68.3.20 66 【解析】 在RtAADF中,AF= 30, DF =24,由勾股定理得 AD=4AF2- DF2 =

15、 302-242= 18.如解图,过点 E 作 EH± AB,垂足为 H , AE= AD + DC + CE = 68, . EH =AE - sin75= 68 - sin75g 68x 0.97= 65.96= 66(cm). .点 E 到 AB 的距离约为 66 cm.21 271.8 【解析】 如解图,过点 D作DELAB于点E,B= / C= / DEB = 90 ° .:. 四边形 BCDE 是矩形.EDC = 90°, BE=DC = 44 cm.在 RtAED 中,/ADE=153° 90 =63°, AE = AD - si

16、n6并256X 0.89= 227.84 cm.,AB = AE +BE = 227.84+44 = 271.8 cm.,线段AB的长度约为271.8 cm打22 0.9【解析】如解图,过点B作BHFC, BIXAG,垂足分别为点 H,点I,延长 AG 交 FC 于 点 J.在 RtAABI 中,/ABI = 32.5 °, Z AIB = 90° ,. AI =AB - sin32.5 0.8X 0.54= 0.43.又/ BIJ = / IJH = / JHB = 90°, 四边形 IJHB 为矩形. . IJ =BH = 0.36.,点 A 到地面的高度为

17、AI + IJ + CD = AI + BH + CD 0.43 + 0.36+ 0.06 = 0.850.9 m.23 22 【解析】在 RtADAE 中,AE= 18.4, / ADE = 38 AD = , AE 京 184= 23.,AC tan38 0.83= AD + CD = 23+16=39.在 RtABC 中,/ BCA=30, . AB = AC tan3h 39X 看=22m.主塔 AB的高约为22 m.24 22.5【解析】 如解图,延长 OB交AC于点D,由题可知 BDXCA,设BC=x,则BO = OA-BC=(75-x),在 RtACBD 中,/ BD = BC

18、- sih ACB = x - sin3K 0.6x, . DO = OB + BD= 75 x+ 0.6x=(750.4x),在 RtAAOD 中,DO = AO - cosAOD = 75 - cos3并60, .75-0.4x=60,解得 x= 37.5, . BD=0.6x= 22.5 cm, 点 B 到 AC 的距离约为 22.5 cm.25 27.0【解析】 如解图,延长 OA交BC于点 F , AOLOE,AOE =90° . BC/ OE, BFO = Z AOE = 90° 在 RtAABF 中,AB =30 cm,/ AF-sin/B = AB5.AF=

19、AB sin B=30 sin70 3 30X 0.94 = 28.20 cm.,AF CD+ AO= 28.208 + 6.8= 27.0 cm,端点D到桌面OE的高度约为27.0 cm.9.解:(1)在 RtABE 中,BE =在 RtMCE 中,CE =AEtan Z ACEAEtan/ABE'设AE= x m,贝U - /丁+ + 工-千20, ' tan11 tan31 '解得 x=2.89 m. . AG= AE+ EG = 2.89+0.6= 3.5 m.答:线段AG的长度约为3.5 m; (3分)(2)如解图,当线段 AFLAC时, AEXBC, .Z

20、FAE + Z CAG = 90°, Z CAG + Z ACE = 90° ./ FAE = ZACE=31° . .tan/ FAG= tan31 °=悬,FG = AG tan3作 3.5 x 0.6= 2.1 m.答:点F与点G之间的距离约为2.1 m. (8分)10. 271.4【解析】如解图,分别过点 D,点E作DM,AB的延长线于点 M, ENLAB的延长线于点 N, DHXEN 于点 H ,在 RtADBM 中,sinZ DBM = DM , . DM = DB200 sin3g 114./ EDC = / CNB = 90 °

21、, / DCE = / NCB ,/ DEC = / CBN = 35 ° 在EH。RtA DEH 中,cos/DEH =靠, EH = 192 cos35为 157.44 cm. . . EN = EH + HN = EH +DM = 157.44+ 114=271.4 cm.11. 26【解析】AB 的长为 4tt,4 Tt=空"0,n=72,AOB=72°, AOC180= /BOC, BOC = 36°,由题意知 EF 为。的切线,/.OBIEF, / DF ±EF,/ EDF OB10=Z BOC = 36 , cos/ EOB=OE

22、,. . 0.81 = OE, . . OE= 12.3 cm , . DE = DC OC + OE= 30-10+12.3=32.3 cm, . DF = 32.3 cDs= 32.3X0.81 = 26 cm.,点 D 到直线 l 的距离约为 26 cm.12. 11.7【解析】如解图,过点 C作CHLBD于点H,易证四边形 DECH为矩形,设AC 与 BD 交于点 G. /CHXBD, BDXAE,,CH/AE, . . / HCG = / GAD = 11.5 ;又BC 与 AC 的夹角为 23°, . BCH = 23 11.5 °= 11.5 °,即

23、/ BCH = / GCH = / GAD,又 D 为AE的中点,四边形 DECH为矩形,AD = DE = CH,可证 ADGA CHGACHB , ,-.DG = HG = HB,由题可得 BD = 6,,DG= HG = HB=;BD=2,在 RtADG 中,DG = 2, 3/GAD =11.5 °,AD = DG10,在 RtA ABD 中,由勾股定理得 AB=JAD2+ BD2 =tan11.5n加2+ 102 =2取=11.7 m,即AB的长度约为11.7米. i) 也13. 95【解析】如解图,连接 EF,延长MN交EF于点H,过 M作MPLEF于点P.由题意知 ON / GD / EF, DN / OG ,/ NHP = / E,四边形 OGDN和OEHN是平行四边 形./.GD=ON=40 cm, NH=OE./Z DOG = 90°, / ODG = 30°,/ NHP = / E = / OGD=60OG = GD sin30= 20. . . NH = OE = OG+GE= 50.在 RtAMHP 中,MH = MN + NH =110 cm, MP = MH - s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论