基于PLC的矿井提升机变频调速控制系统设计.doc_第1页
基于PLC的矿井提升机变频调速控制系统设计.doc_第2页
基于PLC的矿井提升机变频调速控制系统设计.doc_第3页
基于PLC的矿井提升机变频调速控制系统设计.doc_第4页
基于PLC的矿井提升机变频调速控制系统设计.doc_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、洛阳理工学院毕业设计(论文)基于PLC的矿井提升机变频调速控制系统设计 摘 要 本文针对提升机控制系统中存在的上述问题,把可编程序控制器和变频器应用于提升机控制系统上,并在可行性方面进行了较深入的研究。根据提升机的运行特点,控制系统采用工控机监控提升机变频调速系统, PLC控制系统、变频调速系统等组成。为了提高系统的可靠性,对提升机各种物理量及控制单元进行控制监控。提升机的动态监测由工控机或触摸屏和组态软件组成。用户在组态环境中完成动画设计、设备连接、编写控制流程和工程所需要的信息报表以及结果打印等。主控系统采用PLC系统,硬件简洁、软件灵活性强、调试方便、维护量小,配合一些专用电子模块组成的

2、提升机控制设备,可供控制高压带动动力制动或低频制动等。同时能检测各电机故障现象并送往上位机显示。减少了传统继电器接触式控制系统的中间环节,减少了硬件和控制线,极大提高了系统的稳定性,可靠性。关键词:矿用提升机;变频调速;矢量控制;可编程控制器The Freouency Conversion Use on The Speed Adjustment of Shaft Hoist on The Basis of PLC Control ABSTRACT   Elevator Control System In this paper, the above problems

3、 exist in the PLC and frequency converter used in elevator control system, and for a more in-depth feasibility study. According to the operation of hoist features, the control system IPC VVVF elevator control system, PLC control systems, frequency control system components. In order to improve syste

4、m reliability, and various physical quantities on the elevator control unit to control monitoring. Dynamic monitoring of elevator or the touch screen by IPC and configuration software. User environment, complete the animation in the configuration design, equipment connections, control flow and proje

5、ct preparation of the required information statements, and the results of printing. Master control system uses PLC systems, hardware simplicity, the software flexibility and easy commissioning and maintenance of small, specialized electronic modules with a number of the elevator control equipment, d

6、rive dynamic braking for control of high pressure or low-frequency braking. While the motor symptoms can be detected and sent to the host computer display. Relay contact to reduce the traditional control system of the intermediate links, reducing hardware and control lines, which greatly improves sy

7、stem stability and reliability. KEY WORDS::Shaft hoist;Frequency conversion;Vector control;PLC8目录前言1第1章 绪 论21.1课题概述21.2国内外矿井提升机的发展状况21.2.1国外矿井提升机的现状21.2.2国内提升机的现状与发展趋向61.3 本文内容及研究的意义71.3.1 研究内容71.3.2 研究意义8第2章 矿井提升机调速系统的设计92.1 矿井提升机对控制系统的要求92.2 提升机调速控制系统方案设计112.2.1 控制单元基本原理112.2.2 调速装置132.2.3 主控系统设计1

8、5第3章 变频调速系统的设计183.1变频调速的发展及在提升机系统中的应用183.2 变频调速基本原理203.3 变频器的选择213.3.1变频器的选型213.3.2 变频器容量的选择223.3.3 变频器主电路设计及参数设定23第4章 PLC在提升机变频控制系统中的应用264.1 PLC概述264.2 本系统中PLC的选型及特点274.3 PLC控制系统设计274.3.1 PLC的I/O分配284.3.2 PLC接线图33第5章 PLC控制程序设计345.1 PLC软件概述及提升机PLC控制要求345.2 程序设计355.3系统抗干扰措施40结论42谢 辞43参考文献44附录46外文资料翻译

9、47前言在煤炭生产中提升机担负着提升煤炭、岩石、下放材料、升降人员和设备的任务,是联系井上与井下的唯一途径,素有矿井“咽喉”之称。提升机的电力传动特性复杂,电动机频繁正反向,经常处于过负荷运转和电动、制动不断地转换的状态中。对提升机来说,运行的安全、可靠性是至关重要的,主井直接关系到矿山的生产效率,作为运送人员的副井,一旦发生故障,往往造成机毁人亡。提升机运行的安全可靠性不仅直接影响整个矿井的生产能力,影响整个矿山的经济效益,而且还涉及到井下工作人员的生命安全。因此,研制并制造既安全可靠又节省能源的提升机是煤矿安全生产的一项重要课题。就计算机技术在工业现场应用情况而言,可编程控制器(PLC)是

10、目前作为工业控制最理想的机型,它是采用计算机技术、按照事先编好并储存在计算机内部一段程序来完成设备的操作控制。采用PLC控制,硬件简洁、软件灵活性强、调试方便、维护量小,PLC技术己经广泛应用于各种提升机控制,配合一些提升机专用电子模块组成的提升机控制设备,可供控制高压带动力制动或低频制动,单、双机拖动等。操作、监控和安全保护系统选用可编程控制器。主控计算机应用软件能完成提升机自动、半自动、手动等各种运动方式的控制要求。在广泛考察现行的变频调速方案后,本文提升机系统控制单元采用目前工控适用的可编程控制器来控制,具有编程简单和控制可靠性高的优点;电力拖动系统中,选用先进的变频传动装置,运用先进的

11、矢量控制技术,优化了调速系统的性能,这一控制方法目前仍为现代交流调速的重要研究方向之一。采用先进的工业计算机、现场总线和工业自动化技术,按照结构标准化、产品系列化、性能现代化、体积小型化的原则,研制生产适合矿井提升机电控设备是进行技术改造和新建矿井设备选型的理想选择。第1章 绪 论1.1课题概述矿井提升机是机、电、液一体化的大型机械,广泛用于煤炭、有色金属、黑色金属、非金属、化工等矿山的竖井、斜井,是生产运输的主要工具。在煤炭生产中提升机担负着提升煤炭、矸石、下放材料、升降人员和设备的任务,是联系井上与井下的唯一途径,素有矿井咽喉之称。提升机的电力传动特性复杂,电动机频繁正反向,经常处于负荷运

12、转和电动、制动不断地转换的状态中。对应提升机来说运行的安全可靠是至关重要的,主井直接关系到矿山的生产效率,作为运送人员的副井,一旦发生故障往往造成机毁人亡。提升机运行的安全可靠性不仅直接影响整个矿井的生产能力,影响整个矿山的经济效益,而且还涉及到井下工作人员的生命安全。因此,研制并制造即安全可靠又节省能源的提升机是煤炭安全生产的一项重要课题。1.2国内外矿井提升机的发展状况矿井提升装置是采矿业的重要设备,随着科学技术的进步和矿井生产现代化要求的不断提高,人们对提升机工作特性的认识进一步深化,提升设备及拖动控制系统也逐步趋于完善,各种新技术、新工艺逐步应用于矿井提升设备中。特别是模拟技术、微电子

13、技术、微电脑技术在提升机控制中的应用已成为必然的发展方向。1.2.1国外矿井提升机的现状(1) 晶闸管-电动机(SCR-D)直流低速直联拖动系统部分发达国家原有的交流提升机已基本上被晶闸管-电动机(以下简称SCR-D)所取代。如德国、瑞典等国家己有90%以上采用直流提升机,传动系统大都采用低速直联式(省去减速机),使系统大为简化。如AEG公司采用低速直联的SCR-D系统,电机功率3000kw,额定转速55.8r/min,滚筒直径6.5m,提人速度17m/s,提物速度20m/s,提升高度1200m,具有完善的保护系统;采用磁场反并联,有平波电抗器及卧式深度发送装置;采用积分给定与行程给定相结合的

14、双重给定信号;主回路采用两组三相桥组成12脉动顺抗整流,大大提高了功率因数。SIEMENS(西门子)公司、ABB公司、CEOELEC公司以及ASEA公司等都有相同类型的产品,其性:能大同小异。此类系统的优点在于:体积小,重量轻,占地面积小,安装方便,建筑费用低;无减速器,总效率高,电能消耗少;维护工作量小,备件少,处理事故快;单机容量大,适用范围广;调速平滑,精度高;易于实现最佳控制和自动化,安全可靠;节电显著,5-8年可回收设备投资,是矿井节电的有效途径。其缺点在于:功率因数低,如三相桥平均功率因数只有0.45左右;无功冲击大,高次谐波对电网影响大。这些缺点可采用顺序控制和多脉冲整流的方法以

15、及在电网上加谐波滤波器等措施使其抑制在一定的允许范围内。(2) 交流变频调速同步机驱动提升系统SCR-D直流拖动系统趋于成熟,且采用了顺控技术等措施来提高功率因数,但其功率因数仍然较低,从而从电网吸收大量的无功功率,且对电网品质因数产生严重的影响,提升容量越大,问题越突出。再则,直流电机制造成本高,电枢回路的整流子限制了提升容量的进一步增加,且整流子,碳刷易磨损,加大了维护工作量,故障率高。因此换相整流子是个薄弱环节。由于存在上述两个问题,迫使人们又重新考虑交流拖动方式。自80年代初以来,交流变频供电的同步机拖动异军突起,在大型提升机中发展成为技术、经济均优的拖动方式。如SIEMENS公司19

16、79年投运的2×4200kw、l×2650kw,额定转速55.8r/min;CEGELEC公司1983年投运的l×548OkW,额定转速69.5r/min;AEG公司1985年投l×30O0kW,额定转速55.8r/min,ABB公司投运的l×4200kW额定转速45.86r/min;SIEMAG公司投运的2x46O0kW等变频调速同步机拖动的提升机,经过多年的运行,均获得成功。这种拖动系统主要有如下优点:a 提升容量几乎不受限制,最大可达l0000kw,提升速度可达20m/s以上,提升高度1200m以上,滚筒直径达6.5m,这是直流系统难以达

17、到的;b 没有整流子和碳刷这一薄弱环节,保证了电机的可靠运行和降低了运行消耗;c 功率因数高,可达住0.91,极大地节省了电能;d 动态品质好(和直流系统相同),系统可在四象限平滑过渡和无级调速;e 由于机械特性好,故起动转矩大;f 同步机的价格和有色金属的消耗低于直流机;g 调速范围宽。因此,多数专家认为,变频同步机拖动调速系统是大型提升机拖动的必然发展方向。这种 拖动系统的缺点是:a 必须有专用的变频电源;b 在恒转矩调速时,低速段电机的过载倍数有所降低;c 高次谐波对电网有影响,需在电网上加滤波器等补偿措施加以缓解。(3)微机控制在提升机上的应用从70年代开始,随着微机技术的发展,微机控

18、制技术己逐步应用于矿井提升机中。目前,国外己达到相当成熟的阶段,使整个拖动控制产生一次重大的变革。其应用主要体现在以下几方面: 1) 提升工艺过程微机控制在交流变频装置中,提升工艺过程大都采用微机控制。由于微机功能强,使用灵活,运算速度快,监视显示易于实现,并具有诊断功能,这是采用模拟控制无法实现的。如AEG公司采用CP-80微机、ABB公司采用MASTER-200和SIEMENS公司采用S5-150等微机实现的变频控制,都获得了相当成功。它们把控制、监视、基准值预测以及模拟控制等组合在公共的微机控制总线上组成静止变流器的传动控制,计算机实现速度及多个变量的调节。2) 提升行程控制提升机的控制

19、从本质上说是一个位置控制,要保证提升罐笼在预定地点准确停车,要求准确度高,目前可达±2cm。采用微机控制,可通过采集各种传感信号,如转角脉冲变换、钢丝绳打滑、井筒位置、滚筒及钢丝绳磨损等信号进行处理,计算出罐笼准确的位置而施以控制和保护。在罐笼提升时可实现无爬行提升,大大提高了提升能力。如AEG、ABB、SIEMENS等公司已采用位微机来构成行程给定器,并还提供性能不尽相同的机械行程控制器口。一般过程控制用微机不同时用于监视,行程控制也采用单独微机完成,从而大大提高了系统的可靠性。3) 提升过程监视由于近代提升机控制系统的设计特别强调安全可靠性,所以提升过程监视与安全回路一样,是现代

20、提升机控制的重要环节。提升过程采用微机主要完成如下参数的监视:a 提升过程中各工况参数(如速度、电流)监视;b 各主要设备运行状态监视;c 各传感器(如位置开关、停车开关)信号的监视。其目的在于使各种故障在出现之前就得以处理,防止事故的发生,并对各被监视参数进行存贮、保留或打印输出,甚至与上位机联网,合并于矿井监测系统中。4) 安全回路安全回路旨在出现机械、电气故障时控制提升机进入安全保护状态。为确保人员和设备的安全,对不同故障一般采用不同的处理方法,大致分为以下四种情况:a 报警显示,如冷却器温度过高等;b 二次不能开车,如电机绕组过热、制动油过热等;c 立即进行电气制动,如停车终点设备出现

21、故障时本次提升应尽快停下来;d 立即进行安全制动,如过卷、超速等。安全回路极为重要,它是保护的最后环节之一,英、德等公司都采用两台PC微机构成安全回路,使安全回路具完善的故障监视功能。无论是提升机还是安全回路本身出现故障时都能准确地实施安全制动。5) 制动系统的控制与监视制动(可调闸)控制系统除要可靠地完成工作制动和安全制动外,还要完成对液压站的控制以及各环节参数(如油压、闸瓦磨损等)的监视,其技术要求与安全回路相似。如西门子公司采用两套可编程序控制器(PLC)的双重控制与保护系统。6) 全数字化调速控制系统德国AEG公司的Logidyn D(32位机)、西门子公司的Siemadyn D(16

22、位机)以及ABB公司的Tyrak(16位机)系统都己应用于提升机上。全数字化系统具有硬件结构单一,参数稳定且调整方便,可方便地与上位机联网等优点。当然此类系统要求维护人员有更高的技术水平和计算机知识。7) 内装式提升机AEG公司生产的内装式提升机,将提升主电机与滚筒合为一体,即转子固定,转动的定子充当滚筒,使机构大为简化,占地面积小,制造成本低。1.2.2国内提升机的现状与发展趋向(1) 交流拖动方式目前我国提升机约70%采用串电阻调速的交流拖动方式。有单绳和多绳两种系列,大都采用改变转差率s的调速方法,在调速中产生大量的转差功率,使大量电能消耗在转子附加电阻上,导致调速的经济性变差。极少数提

23、升机采用串级调速方法,其调速范围窄,且投资大。(2) 直流拖动方式我国提升机采用直流拖动有两种系统:直流发电机一直流电动机机和晶闸管一直流电动机系统。其生产和使用情况如下: 国内研制大型直流提升机主要有三大厂家:a 上海电机厂主要生产配套电机,已生产低速直流电机80多台,最大容量5775kw,额定转速5Or/min,其中长广煤矿及五村煤矿的提升机为100OkW、48r/min,淮南潘三矿采用一台26O0kW低速直联电机;b 上海冶金矿山机械厂主要生产主机及信号系统,已生产80 多台提升机,1979 年生产过一台低速直联落地式提升机;c 北京整流器厂主要生产配套电控,已从瑞士BBC公司和瑞典AS

24、EA公司引进了晶闸管电控整机系统及元件生产线,直流电控容量可达7000kW;还引进了交流变频调速(交一直一交)电控生产线,可生产单机4200kW变频调速电控设备;1986年向甘肃金川矿提供了一套带微机控制的800kW直流电控设备。 从国外引进的晶闸管供电的直流提升机20多套,其中AEG公司21O0kW低速直联6套、西门子公司低速直联4套、瑞典ASEA公司9套。另外,还正在引进计算机控制的低速直联电控系统。(3) 研制与发展 国产大型直流提升机及电控系统正在逐步完善和推广使用。 大功率变频调速电控提升机其效率可达89%,国内正在组织研究这种系统,不少院校和研究单位都在着手研制。如天津电气传动研究

25、所己研制了一台300kw的变频调速装置。 可编程序控制器在提升机电控系统的应用可编程序控制器具有可靠性高、抗干扰能力强、实现继电逻辑容易,基本免于维护等独特优点,特别适用于对我国占大部分的交流提升机继电-接触器电控系统进行技术改造;因此有不少单位都在着手研制,如焦作矿务局,韩城矿务局均用可编程序控制器对TKD电控系统进行改造,已投入正常运行和使用,已经显示出了很强的生命力。这是今后一段时期乃至凡十年对我国占绝大多数采用继电控制的交流提升系统进行技术改造的必由之路。1.3 本文内容及研究的意义1.3.1 研究内容当前国内提升机电控绝大多数还是转子回路串电阻分段控制的交流绕线式电机继电器接触器系统

26、,设备陈旧、技术落后。而且这种控制方式存在着很多的问题:(1) 转子回路串接电阻,消耗电能,造成能源浪费。(2) 电阻分级切换,为有级调速,设备运行不平稳,容易引起电气及机械冲击。(3) 继电器、接触器频繁动作,电弧烧蚀触点,影响接触器使用寿命,维修成本较高。(4) 交流绕线异步电动机的滑环存在接触不良问题,容易引起设备事故。(5) 电动机依靠转子电阻获得的低速,其运行特性较软。(6) 提升容器通过给定的减速点时,由于负载的不同,而将得到不同的减速度,不能达到稳定的低速爬行,最后导致停车位置不准,不能正常装卸载。上述问题使提升机运行的可靠性和安全性不能得到有效的保障。因此,需要研制更加安全可靠

27、的控制系统,使提升机运行的可靠性和安全性得到提高。在提升机控制系统中应用计算机控制技术和变频调速技术,对原有提升机控制系统进行升级换代。就计算机技术在工业现场应用情况而言,可编程控制器(PLC)是目前作为工业控制最理想的机型,它是采用计算机技术、按照事先编好并储存在计算机内部一段程序来完成设备的操作控制。采用PLC控制,硬件简洁、软件灵活性强、调试方便、维护量小,PLC 技术已经广泛应用于各种提升机控制,配合一些提升机专用电子模块组成的提升机控制设备,可供控制高压带动力制动或低频制动,单、双机拖动等。操作、监控和安全保护系统选用可编程控制器。主控计算机应用软件能完成提升机自动、半自动、手动、检

28、修、低速爬行等各种运动方式的控制要求。1.3.2 研究意义在调研中发现,目前山西省各大煤矿的矿井提升机系统的调速方案大多采用继电器接触器控制的转子串电阻调速。该方案耗能大,占地面积大,已不能适应现代矿业发展的需要.因此有必要对其调速方案进行改造。在广泛考察现行的变频调速方案后,本文提升机系统控制单元采用目前工控适用的可编程控制器来控制,具有编程简单和控制可靠性高的优点:电力拖动系统中,选用先进的变频传动装置,运用先进的矢量控制技术,优化了调速系统的性能,这一控制方法目前仍为现代交流调速的重要研究方向之一。 采用先进的工业计算机、现场总线和工业自动化技术,按照结构标准化、产品系列化、性能现代化、

29、体积小型化的原则,研制生产适合矿井提升机电控设备是进行技术改造和新建矿井设备选型的理想选择。使用上位机监控系统,采用组态模式,实现良好的人-机对话;实时监控提升机的运行状态,上位机动态模拟显示及故障闭锁:可进行故障报警、数据查询、报表打印;记录提升钩数以及每班、每日、每月、每年的提升量累计;故障声光指示、记忆及部分传感器上位机的紧急处理。为保证提升设备无事故,在提升设备有可能出现故障的各个重要环节上,设置双回路系统,并在系统的各个环节上设有各种检测、控制、自诊断以及记录和保护装置(如负载、速度、加减速、产量、运行时间等记录)。本文从解决实际矿井提升系统存在的问题出发,对传统的调速方案进行了控制

30、方式的革新和数字化改造,降低了成本,提高了控制精度,加强了系统稳定性。表明本文所提出的设计方案具有实用价值。适用、经济、高效、可靠是本文提升机系统设计的追求目标。第2章 矿井提升机调速系统的设计2.1 矿井提升机对控制系统的要求提升机控制系统方案的选用应满足生产工艺的要求速度图。所以需要先来分析提升机电控系统的静、动态特性。提升机电气传动系统的给定速度u=f(t)如图2-1所示,根据动力学方程式Td=Te-Ti= Tn *e/375 (2.1)式中 Te-电动机电动力矩;Ti-传动系统的静阻转矩;Tn-传动系统的飞轮力矩,Tn=4gJ,其中J为转动惯量(·),g为重力加速度Td-传动

31、系统的动态转矩,e-加速度。可以得出按给定速度图所需转矩Te=f(t)的特性,从而可以得到拖动系统所需的力F=f(t),提升机传动系统给定速度图、力图如图2-1所示。 图a 图b图c图d 图2-1 提升机传动系统给定速度图、力图提升机的负载静力FL决定于提升机滚筒承受的静张力差,在双罐笼的平衡提升系统中,静力凡也就是提升物体的净载重。由于提升系统的负载为位势负载,所以静力FL的作用方向始终是提升重物的重力方向,而与系统的运动状态和方向无关。因此在电动机不带电时,为了使重的罐笼处于静止状态(便于罐笼的装卸载),对滚筒必须施加机械闸。从图2-1可以看出,要使提升机按照给定的速度图运行,电动力矩Te

32、可能为正,也可能为负。这意味着电动机不仅要工作在电动状态,还应能工作在制动状态。由于不同的负载,不同的提升机运行阶段,电动机的运行状态也各不相同。综合以上提升机的运行特点以及矿山生产固有的特点,提升机工艺对提升机电控系统的要求如下:(1) 加(减)速度符合国家有关安全生产规程的规定。提升人员时,加速度a0.75m/s2,升降物料时,加速度a1.2m/s2,另外不得超过提升机的减速器所允许的动力矩。(2) 具有良好的调速性能。要求速度平稳,调速方便,调速范围大,能满足各种运行方式及提升阶段(加速、减速、等速、爬行等)(3) 有较好的起动性能。提升机不同于其他机械,稳定运行的要求。不可能待系统运转

33、后再装加物料,因此,必须能重载启动,有较高的过载能力。(4) 特性曲线要硬。要保证负载变化时,提升速度基本上不受影响,防止负载不同时速降过大,影响系统正常工作(当然,当负载超过一定的限度时,还要求系统能有效的自我保护。迅速安全制动停车,即所谓要具备挖土机机械特性)。(5) 工作方式转换容易。要能够方便的进行自动、半自动、手动、验绳、调绳等工作方式的转换,操作方便,控制灵活,不至于因工作方式的转换影响正常生产。(6) 采用新技术和节能设备,易于实现自动化控制和提高整个系统的工作效率。具备必要的连锁和安全保护环节,确保系统安全运行.尽量节约能源和降低运转费用。2.2 提升机调速控制系统方案设计2.

34、2.1 控制单元基本原理我国提升机设备中,普遍使用TKD系统,这种控制系统是采用继电器有触点的逻辑控制,以磁放大器为核心组成模拟量闭环调节。在继电器控制系统中,要完成一个控制任务,支配控制系统工作的“程序”是由各分立元件(继电器、接触器、电子元件等)用导线连接起来加以实现的,这样的控制系统称为接线程序控制系统。在接线程序控制系统中,控制程序的修改必须通过改变接线来实现。几十年来 ,这种控制系统由于受元件水平的限制而存在着缺陷,突出表现在:(1) 使用大量继电器、接触器及其它分立电子元件,系统体积大,运行噪声大,功耗高,接线复杂,故障率高,工作稳定性和可靠性差,控制速度慢,控制精度差,功能改变难

35、度大,使用寿命短。(2) 在启动过程中,由于罐笼的实际载重量不同,实际的加速过程并非按照预定的设计参数运行,常常出现停车不准确甚至提前停车现象。(3) 采用磁放大器做调节控制,稳定性差,线性度差,调速精度很难保证。(4) 系统安全保护环节不全面,工作不可靠,故障显示不直观,分析查找故障难度大,缺乏运行参数显示功能.(5) 调速性能差,机械冲击大,人员乘车舒适性差。这些不足主要是因为采用继电器控制方式造成的,在这种控制方式下继续改善的余地不大。如果对该竖井提升机电控系统进行技术改造,那么需要改变控制策略,采用当代高新实用技术来控制,使之成为安全、可靠、高效率、自动化程度高的电控系统。是可编程序逻

36、辑控制器,简称PLC,PLC技术是现代工业自动化的重要手段,由它构成的控制系统逻辑控制由PLC通过软件编程实现,柔性强,控制功能多,控制线路大大简化;PLC的输入喻出回路均带有光电隔离等抗干扰和过载保护措施,程序运行为循环扫描工作方式,且有故障检测及诊断程序,可靠性极高;PLC控制系统结构为模块化结构,维护更换方便,并可显示故障类型。图2-2为可编程控制器控制系统。其输入设备和输出设备与继电器控制系统相同,但它们是直接接到可编程序控制器的输入端和输出端的。控制程序是通过一个编程器写到可编程控制器的程序存储器中.每个程序语句确定了一个顺序,运行时依次读取存储器中的程序语句,对它们的内容进行解释并

37、加以执行,执行结果用以接通输出设备,控制被控对象工作。在存储程序控制系统中,控制程序的修改不需要通过改变控制器内部的接线(即硬件),而只需通过编程器改变程序存储器中某些语句的内容。 图2-2 可编程控制器控制系统框图可编程逻辑控制器因为其具有高可靠性以及软件可编程的优点,在现代控制中越来越广泛的应用。对于一般提升机电控系统来说,采用一套中小容量的PLC即可满足要求,其价格也不高.如果采用PLC技术对TKD-A电控系统进行改造,把原来由各种电器通过连线而实现的逻辑控制改由PLC通过软件编程实现,则控制线路将大大简化,设备体积、设备维修量将大大减小,抗干扰能力将大大增强,工作可靠性将大大提高,工艺

38、改变时只需要改变控制程序即可。改造时保持原有的操作方式、按钮、开关、主令控制器作用不变,则用户使用起来将非常方便,不需要适应期。同时可以利用PLC的高速计数功能、网络通信功能、故障检测及诊断功能、信号显示功能等来增加一些新的控制功能,安全性将大大提高,运行将更加平稳、准确,完全能够满足矿山生产的苛刻要求,而且投资相对较少,性价比较高,具有很强的实用价值。2.2.2 调速装置矿井提升机,从电力拖动而言,可分为交流拖动和直流拖动两大类。我国目前正在服务的矿井提升机的电控系统中,属于交流拖动的有转子电路串电阻的调速系统:属于直流拖动的有直流发电机与直流电动机组成的G-M调速系统和晶闸管整流装置供电的

39、V-M调速系统。直流拖动系统一般采用他励电动机作为主拖动电机,它具有调速性能好,低速阶段运行稳定,在加速,减速和低速运行时的电耗小,容易实现自动化控制等优点.根据供电方式的不同,直流拖动系统又可分为两类,一类是发电机组供电的系统(简称G-M系统),一类是晶闸管供电的系统(简称V-M系统)。G-M系统的特点是过载能力强,所需设备均为常规定型产品,供货容易,运行可靠,维护工作量大但是技术要求不高,对系统以外的电网不会造成有害的影响,即不会引起电力公害等。与G-M系统相比,V-M系统具有以下优点:功率放大倍数高,G-M系统的功率放大倍数在101左右,V-M系统可高达104,比G-M系统高三个数量级;

40、快速响应性好,G-M系统为秒级,V-M为毫秒级,因而动态品质快速性能较好;功耗小、效率高,G-M系统平均效率为75%左右,V-M系统可达85%左右,比G-M系统效率提高10%以上;调速范围大,由于剩磁影响,G-M系统在调速时转速受到限制,而V-M系统调速时速度从零到最大速度都能控制,运行可靠。直流拖动系统具有调速性能好的特点,是交流拖动系统无法相比的。而V-M系统由于具有以上一些突出的特点,因此,目前在大型提升机方面,世界各国大多采用直流拖动方案,尤以V-M系统为主。但是根据国内生产实践经验表明,V-M系统尚存在以下缺点:(1) 晶闸管元件的过载能力(过电压、过电流)较低,因此在矿井提升机系统

41、中作为供电元件时,为了适应瞬时过载(例如提升机的加速阶段)的需要,通常将元件的容量和耐压等级都相应增大,或者增加使用的晶闸管元件数量,使元件作串联或并联运行,即使用的元件在正常负载时处于低负载(降级使用),以确保在过载的加速阶段,晶闸管元件的负载仍然在额定负载的范围内,不致由于出现过负荷时使晶闸管元件烧毁。但由于这种降级使用,也给生产维护上增加了困难。(2) 有冲击性的无功功率。由于高次谐波的影响,使电网电压的波动加大并导致畸变,即所谓引起“电力公害”:同时低速时功率因数也较低。目前,在我国使用的多绳摩擦轮提升机,G-M直流拖动占一定比例,而进口的直流拖动提升系统,则全部采用V-M系统。传统的

42、串电阻交流拖动系统具有结构简单,坚固耐用,占地面积小,维护方便,运行可靠价格低廉,设备供货容易,安装调试周期短等优点.主要缺点是启动阶段电能损耗较大,当用于要求频繁启动或不同运行速度的多水平提升机时就更为不经济。但用于单水平提升时,其提升效果实际上与用发电机组供电的直流拖动系统相当。此外在调速性能方面,交流拖动系统一般不如直流拖动系统优越,但选用了动力制动、低频制动、可调机械闸、负荷测量、计算装载等辅助装置后,交流拖动系统亦可获得满意的调速性能。综上原因,交流拖动系统在我国中小型矿山或者中等深度以下矿井获得了广泛应用。近年来交流变频调速技术迅速发展起来,调速方式的不断进步使得运用于提升机系统的

43、交流调速技术不仅仅局限于传统的转子串电阻方式,变频调速技术也越来越多地在提升机控制系统中广泛应用,充分发挥出交流调速的优势。目前交流调速最有前途的是变频调速技术,在变频调速技术中矢量控制和直接转矩控制都能满足提升机恒转矩负载这一特征,所以在提升机调速系统中这两种调速方案将是重要发展方向。2.2.3 主控系统设计基于PLC控制的大功率矿井提升机变频调速控制系统由主控系统、变频系统、液压站、润滑站、操作台、安全保护和控制监视系统组成,系统框图如图2-3所示。各部分功能如下。 2-3 提升机控制系统框图 (1)主控系统图2-3为提升机控制系统框图。系统的主控系统采用三菱FX2N系列的可编程控制器,一

44、备一用,当主PLC发生故障的时候可以迅速切换备用PLC不影响生产。使用PLC集成高速计数输入口以及特殊高速计数模块相结合,对分别安装于电机轴、辊筒主轴、天轮的四个编码器数据进行采集,同时监视速度、深度以及判断松绳;A/D模块采集现场液压站及润滑站的油压、油温等信号;在井筒及深指器各阶段安装行程开关,用以确定罐笼位置,并相互校验,达到停车位的精确控制。程序编制满足提升机自动、半自动、手动、验绳、调绳等工作方式,并可方便的转换;满足提升阶段(如加速、减速、等速、爬行等)稳定运行的要求。 (2)变频调速系统调速系统采用德国制造西门子变频器,性能优越,采用矢量控制技术适合提升机工作环境,只需在控制单元

45、给出对变频器的控制命令(正转、反转、多段速等)即可使提升机按照设定的速度曲线运行,满足提升阶段稳定运行的要求。变频调速装置本身具有过压、欠压、过流、过负荷、缺相、超温等保护,同时配合来自现场的各种信号传感器的监视及相应处理,可实现绞车过卷、过速、减速、限速等重要保护的双线制保护功能,满足煤矿安全规程要求。在变频器系统中输出闸控信号到PLC,要求只有在变频的输出转矩达到一定值的时候才可以松闸,这样会避免竖井提升机启动时发生溜车现象。 (3)液压站为提升机提供制动力,停车时先通过液压站给卷筒施加机械制动力,再取消直流制动力;提升机起动时,先对电机施加直流制动,再松开机械抱闸,防止溜车,以保证系统安

46、全可靠地工作。 (4)操作台操作台设置两个手柄,分别用于速度辅助给定及制动力给定。它是整个矿井提升机运输系统的控制核心,通过它可以设定系统的工作方式和控制方式,可以发布系统的各种控制命令,以实现对提升机启动、加速、平稳运行、减速、停车以及紧急制动等各种控制功能。 (5)控制监视系统:是操作人员和控制系统及运输系统之间的桥梁,它可以在线监测提升机运输系统的各种工作参数、工作状态、故障参数和故障状态。 (6)安全保护本系统设有一条硬件安全电路和两条软件安全电路,这三条安全电路相互冗余与闭锁,一条断开时,另两条也同时断开。硬安全回路通过硬件回路实现,无论PLC单元是否正常工作,一旦出现重度故障信号,

47、硬安全回路马上断开;软安全回路分别在两套PLC软件中搭建,与硬安全回路相同并且同时动作。安全电路断开后,系统会立即解除运行控制指令,封锁变频器,制动油泵,断开安全阀和KT线圈,进行紧急制动。安全保护功能齐全,设有过卷、等速超速、定点超速、PLC 编码器断线、错向、传动系统故障及自动限速等保护功能。控制系统工作原理:当司机听到开车信号时,按下启动按钮,PLC控制将380V动力电源接入变频器。再松开液压制动闸并将主令控制器推到正向(或反向),提升机开始运行。在提升过程中,控制提升机运行的主速度给定S形速度曲线由PLC编程产生,经过A/D转换,由模拟量输出口输出,以驱动变频器工作;对变频器输出频率的

48、调整控制,也可根据现场的工况需要,由操作台速度控制手柄以辅助给定的方式进行控制。旋转编码器可以检测主电动机的转速,并将此信号传送给可编程控制器,PLC通过该信号可以累计计算提升机的速度及行走距离,监视器可以时时显示提升机速度和位置。17洛阳理工学院毕业设计(论文)第3章 变频调速系统的设计3.1变频调速的发展及在提升机系统中的应用传统调速系统中,直流调速以其控制容易,调速精度高等特点长期占据了主导地位,但是由于结构复杂,过流能力不强,环境适应差,难以实现高速度化等原因,一直限制了其应用范围的进一步扩大。相比较而言,交流异步电机具有环境适应能力强、过流能力大、牢固耐用、结构简单、容易维护及价格低

49、廉等优点,但异步电机的调速性能难以满足生产要求。随着电力电子器件的产生和控制理论的飞速发展,现代控制理论越来越多的应用到交流调速系统中,使得交流调速性能可以和直流调速相媲美、相竞争,交流调速系统的应用领域不断扩大。近年来,电力电子技术的发展和DSP微处理器的推出,更为高性能交流调速系统的实现奠定了基础,目前已经进入了实用化阶段,作为众多调速方案之一的变频调速,其发展不超过40年,却取得了长足的进步,变频调速以其节能和可平滑调速,调速范围宽等优点得到了广泛的应用。交流电动机变频调速控制技术大体经历了以下几个发展阶段:第一个阶段为电压/频率(U/f)恒定控制,这种控制方法在低频时定子电压较低,定子

50、漏抗压降所占的份量不能忽略,因此需要人为地把电压抬高一些,用以补偿定子压降,负载不同时需要补偿的定子压降值也不一样,在控制软件中备有不同斜率的补偿特性,以便用户选择。第二个阶段是矢量变换控制,它的方法是模拟直流电动机的控制特点来进行交流电动机的控制,通过电机统一理论和坐标变换理论,把交流电动机定子电流分解成磁场定向坐标的磁场电流分量和与之相垂直的坐标转矩电流分量,把固定的坐标系变换为旋转坐标系解耦后,交流量的控制变为直流量的控制,于是等同于直流电动机。第三个阶段为直接转矩控制,也叫直接自控,它避开了矢量控制中的两次坐标变换及求矢量模与相角的复杂计算工作,直接在定子坐标系上计算电动机的转矩与磁通

51、,使转矩响应时间控制在一拍以内,且无超调,控制性能更好。提升机控制系统的硬件由模拟技术转向数字技术,全数字变频技术应用于提升机控制。减速段速度调节采用低频发电制动方式,将系统的动能反馈给电网,与动力制动减速相比,不仅调速性能好、减速与爬行自然过渡,而且节能效果显著。采用现代智能控制技术实现速度电流闭环调节,使减速阶段在各种条件下均可严格按照给定的速度图运行,使交流拖动在减速段达到直流拖动的调速性能,减速段到爬行段过渡平滑。这样在提升机系统的最大静张力差允许范围内能实现正力减速与爬行、负力减速与爬行以及验绳等多种工作方式,达到控制要求。采用矢量控制技术零速起动转矩达150%,确保低速爬行时的启动

52、与运行特性,输出频率跟随给定频率,并且频率与电流值可准确指示出来。从而使传动系统获得高精度、高可靠性。采用直接转矩控制可改善低频特性,普通变频器虽然可以输出较低的频率,但输出力矩小,特性较软,应用于提升位能负载时,起动瞬间总要溜车。采用特殊的软件编程,改善低频特性,即使在输出0Hz的情况下,也能输出200%的负载力矩,达到了在整个运行过程都能输出满足负载要求的力矩。完全避免了重载坡起时溜车的现象。提升机使用变频调速控制具有下列优点:(1) 调速平滑、调速范围大。通过控制器的控制,变频器的输出频率可以连续调节,实现无级调速,使电动机起动电流小、动负荷小、调速平滑而无冲击。(2) 调速精度高。电动

53、机在自然特性上运转时的外特性硬,转速随负载变化小。(3) 动态品质好。可使提升机的起动、制动、反转和调速过程的时间降至最少,具有良好的动态品质。(4) 易实现电动机的换向,当频率降低至零后即可反向开车,采用控制器改变相序即可实现反转,因此可在四象限内平滑的过渡。(5) 节电效果显著。变频调速比转子回路串接电阻的调速方法节约电能20%40%。3.2 变频调速基本原理由电机学的基本公式: (4.1)式中电动机定子绕组的磁极对数p一定,改变电源频率f,即可改变电动机同步转速。异步电动机的实际转速总低于同步转速,而且随着同步转速而变化。电源频率增加,同步转速n0也增加,实际转速也增加;电源频率下降,同

54、步转速n0也下降,电机转速也降低,这种通过改变电源频率实现的速度调节过程称为变频调速。在变频调速领域,异步电机的控制方式多种多样,但从转矩的响应性和过渡特性来看,变频调速的控制方式分为以下几种:(1)V/F控制V/F控制是交流电机最简单的一种控制方法,通过控制过程中始终保持V/F 为常数,来保证转子磁通的恒定。然而V/F控制是一种开环的控制方式,速度动态特性较差,电机转矩利用率低,控制参数(如加/减速度等)还需要根据负载的不同来进行相应的调整,特别是低速时由于定子电阻和逆变器等器件开关延时的存在,系统可能会发生不稳定现象.这种控制方式多用于调速精度不高的场所。(2)转差频率控制转差频率控制是检

55、测异步电动机的转速,对转差频率采取闭环控制.与V/F控制相比,调速精度要求较高,且系统容易稳定,即能在宽广的调速范围内,将电动机的转矩、功率因数及效率控制在最佳状态。但是采用此法的电动机调速系统只能是单机运行,同时转差频率控制未能实施对电机瞬时转矩的闭环控制,尽管这种系统的静态精度较高,但由于快速性较差,故适用于对响应的快速性要求不高的系统。(3)矢量控制矢量控制是一种建立在转子磁链定向的基础上,通过一系列的坐标变换,实现电机定子电流转矩分量和磁通分量的解耦的控制方法,可以将作为控制对象的感应电机当作直流电机来进行控制,实现对瞬时转矩的控制。目前,实用中多采用转差频率矢量控制,由于其没有实现直

56、接磁通的闭环控制,无需检测出磁通,因而容易实现。但是其控制器的设计在某种程度上依赖于电机的参数,为了减少控制上对电机参数的敏感性,已经提出了许多参数辨识、参数补偿和参数自适应方案,收到了较好的效果。(4) 直接转矩控制直接转矩控制(DTC)也是一种转矩闭环控制方法,其克服了坐标变换和解耦运算的复杂性,直接对转矩进行控制,通过转矩误差、磁通控制误差,按一定的原则选择逆变器开关状态,控制施加在定子端的三相电压,调节电机的转速和输出功率,达到控制电机转速的目的。由于DTC直接着眼于转矩控制,对转子参数变化表现为状态干扰而非参数干扰,DTC方法比矢量控制方法具有较高的鲁棒性。但是DTC也存在不足之处,

57、其最大的困难就在于低速性能不理想。3.3 变频器的选择选择变频器时应以负载特性为基本依据,分析提升机的负载属于重力,其负载特性属于恒转矩负载特性。由于恒转矩负载类设备都存在一定静摩擦力,负载的惯量很大,在启动时要求有足够的启动转矩。这就要求通用变频器有足够的低频转矩提升能力和短时过流能力。但当低速时负载较重的情况下,为提高转矩提升能力而使电压补偿提的过高,往往容易引起过电流保护动作。选型时应充分考虑这些情况,必要时应将通用变频器的容量提高一档,或者采用具有矢量控制或直接转矩控制的通用变频器。采用矢量控制或直接转矩控制通用变频可以在不过电流的情况下提供较大的起动转矩。对于升降类恒转矩负载,如提升

58、机、电梯等,这类负载的特点是启动时冲击电流大,在其下降过程中需要一定制动转矩,同时会有能量回馈,因此要求变频器有一定余量。 系统设计时应注意适当增大异步电动机的容量或增大通用变频器的容量。通用变频器的容量一般取1.11.5倍异步电动机的容量。3.3.1变频器的选型提升机普遍选用带低速转矩提升功能的电压型变频器,如日本的安川,三菱,富士,德国的西门子及丹麦的丹佛斯等。本系统选用西门子6SE70变频器,西门子变频器具有较合理的价格,完整的理论计算书及辅件推荐值,有利于用户合理选用。6SE07系列变频器是具有多种可供选择接线方式的设备:有将整流部分与逆变部分装于一体的变频器、用于变频器的制动电阻和制动单元、单独的整流单元、整流回馈单元和单独的逆变器。制动运行的方式:对于不经常制动的设备可以选择变频器+制动单元+制动电阻的方式;对于经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论