 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整理整理ppt球整理整理ppt二、球与多面体的接、切二、球与多面体的接、切定义定义1:若一个多面体的:若一个多面体的各顶点各顶点都在一个球的球面上都在一个球的球面上, 则称这个多面体是这个球的则称这个多面体是这个球的内接多面体内接多面体, 这个球是这个多面体的这个球是这个多面体的外接球外接球。定义定义2:若一个多面体的:若一个多面体的各面各面都与一个球的球面相切都与一个球的球面相切, 则称这个多面体是这个球的则称这个多面体是这个球的外切多面体外切多面体, 这个球是这个多面体的这个球是这个多面体的内切球内切球。一、复习一、复习球体的体积与表面积球体的体积与表面积343VR 球球24SR 球球面面
2、 解决解决“接切接切”问题的关键是画出正确的问题的关键是画出正确的,把空间把空间“接切接切”转化为平面转化为平面“接切接切”问题问题整理整理ppt正方体的内切球正方体的内切球整理整理ppt正方体的正方体的内切内切球球的半径是棱的半径是棱长的一半长的一半整理整理ppt正方体的外接球正方体的外接球整理整理ppt正方体的正方体的外接外接球球半径是体对半径是体对角线的一半角线的一半A AB BC CD DD D1 1C C1 1B B1 1A A1 1O O整理整理ppt正方体的棱切球正方体的棱切球整理整理ppt整理整理ppt整理整理ppt正方体的正方体的棱棱切球切球半径是半径是面对角线长面对角线长的
3、一半的一半整理整理ppt:有三个球:有三个球,一球切于正方体的各面一球切于正方体的各面,一球切一球切于正方体的各侧棱于正方体的各侧棱,一球过正方体的各顶点一球过正方体的各顶点,求求这三个球的体积之比这三个球的体积之比.整理整理ppt1. 已知长方体的长、宽、高分别是已知长方体的长、宽、高分别是 、 、1 ,求长方体的,求长方体的外接球的体积。外接球的体积。35变题:变题:2. 已知球已知球O的表面上有的表面上有P、A、B、C四点,且四点,且PA、PB、PC两两两两互相垂直,若互相垂直,若PA=PB=PC=a,求这个球的表面积和体积。,求这个球的表面积和体积。ACBPO O整理整理ppt:正四面
4、体:正四面体ABCD的棱长为的棱长为a,求,求其内切球半径其内切球半径r与外接球半径与外接球半径R.:若正四面体变成正三棱锥,方法:若正四面体变成正三棱锥,方法是否有变化?是否有变化?1 1、内切球球心到多面体各面的距离均相等,外接球、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等球心到多面体各顶点的距离均相等2 2、正多面体的内切球和外接球的球心重合、正多面体的内切球和外接球的球心重合3 3、正棱锥的内切球和外接球球心都在高线上,但、正棱锥的内切球和外接球球心都在高线上,但不重合不重合4 4、基本方法:构造三角形利用相似比和勾股定理、基本方法:构造三角形利用相似比和
5、勾股定理5 5、体积分割是求内切球半径的通用做法、体积分割是求内切球半径的通用做法整理整理pptO1ABEO O1ABEO 1例例 、正三棱锥的高为、正三棱锥的高为 1,底面边长为,底面边长为内有一个球与四个面都相切,求棱锥的全内有一个球与四个面都相切,求棱锥的全面积和球的表面积。面积和球的表面积。62232过侧棱过侧棱AB与球心与球心O作截面作截面( 如图如图 )在正三棱锥中,在正三棱锥中,BE 是正是正BCD的高的高O1 是正是正BCD的中心,且的中心,且AE 为斜高为斜高62BC 21 EO3AE 且且 26243362213S 全全3669 整理整理pptO1ABEO O1ABEO 1
6、23例例 、正三棱锥的高为、正三棱锥的高为 1,底面边长为,底面边长为内有一个球与四个面都相切,求棱锥的全内有一个球与四个面都相切,求棱锥的全面积和球的表面积。面积和球的表面积。62设内切球半径为设内切球半径为 r,则,则 OA = 1 r作作 OF AE 于于 FF Rt AFO Rt AO1E 312rr 26 r 6258S球球整理整理pptO1ABEO 13233sin 36cos 在在 Rt AO1E 中中 sincos12tan23 在在 Rt OO1E 中中26OO1 6258S球球例例 、正三棱锥的高为、正三棱锥的高为 1,底面边长为,底面边长为内有一个球与四个面都相切,求棱锥
7、的全内有一个球与四个面都相切,求棱锥的全面积和球的表面积。面积和球的表面积。62整理整理ppt 1624331V2BCDA 26r 6258S球球例例 、正三棱锥的高为、正三棱锥的高为 1,底面边长为,底面边长为内有一个球与四个面都相切,求棱锥的全内有一个球与四个面都相切,求棱锥的全面积和球的表面积。面积和球的表面积。62OAB CD设球的半径为设球的半径为 r,则,则 VA- BCD = VO-ABC + VO- ABD + VO-ACD + VO-BCD32 全全Sr31 r3223 内内切切球球全全多多面面体体rS31V 整理整理ppt球的表面积与体积球的表面积与体积 变题变题整理整理ppt作业作业整理整理ppt整理整理ppt球的表面积与体积球的表面积与体积 整理整理ppt 【思路点拨】根据球截面性质找出球半径与截面圆半径和球心到截面距离的关系,求出球半径整理整理ppt整理整理ppt整理整理ppt整理整理ppt整理整理ppt整理整理ppt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于防疫的考试题及答案
- 2025年邮政营业员考试试题及答案
- 2025年中学必要考试题目及答案
- 2025年论语期中考试试题及答案
- DB37∕T 3474-2018 土壤中12种有机磷农药及代谢物残留量的测定液相色谱-质谱-质谱法
- 2025年河北省国家保密考试试题及答案
- 老年护理课件题目及答案
- 水库微污染物监控与管理技术方案
- 燃气管道自动化定位与测量技术方案
- 商业银行资产证券化的金融稳定效应
- 《电商平台店铺日常运营管理》课件
- GA/T 2184-2024法庭科学现场截干树木材积测定规程
- T-CASMES 428-2024 商业卫星太阳电池阵通.用规范
- 《节水节电节粮》课件
- 2022年北京市房山初三(上)期中数学试卷及答案
- 《心脏麻醉》课件
- 工业机器人工作站系统组建课后习题答案
- 《教育系统重大事故隐患判定指南》知识培训
- 金融科技金融大数据风控平台开发与应用方案
- 【MOOC】计算机组成原理-电子科技大学 中国大学慕课MOOC答案
- 《生活处处有设计》 课件 2024-2025学年湘美版(2024)初中美术七年级上册
 
            
评论
0/150
提交评论