好氧生物处理(活性污泥法)_第1页
好氧生物处理(活性污泥法)_第2页
好氧生物处理(活性污泥法)_第3页
好氧生物处理(活性污泥法)_第4页
好氧生物处理(活性污泥法)_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章 活性污泥法 第一节 基 本 概 念 什么是活性污泥? 由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。 一组活性污泥图片活性污泥的性质颜色黄褐色状态似矾花絮绒颗粒味道土腥味相对密度曝气池混合液:1.0021.003回流污泥:1.0041.006粒经0.020.2mm20100cm2/mL比表面积污泥浓度(污泥浓度(MLSS,MLVSS)nMLSS:单位体积混合液所含悬浮固体的质量:单位体积混合液所含悬浮固体的质量(Mixed Liquid Suspended Solid)()(g/L)nMLVSS:单位

2、体积混合液所含挥发性悬浮固体的质量(:单位体积混合液所含挥发性悬浮固体的质量(Mixed Liquid Volatile Suspended Solid)n应具有一定的应具有一定的MLSS23g/L,MLSS微生物微生物,所以,反映生化处所以,反映生化处理能力。理能力。nMLVSS可以避免活性污泥中惰性物质影响可以避免活性污泥中惰性物质影响 反映了污泥的活性反映了污泥的活性 ,一定,一定废水处理系统,废水处理系统,MLVSSMLSS有一定的比值,有一定的比值,生活污水生活污水为为0.7。性能指标性能指标: 要求:易吸附有机物要求:易吸附有机物(污泥颗粒松散,表面积大)(污泥颗粒松散,表面积大)

3、、 良良好的凝聚沉降性能,便于泥水分离。好的凝聚沉降性能,便于泥水分离。 MLNVSS灼烧残量,表示无机物含量。灼烧残量,表示无机物含量。污泥沉降比污泥沉降比SVSubside (Sludge)Value(Volume)nSV:混合液沉淀混合液沉淀30min后,沉淀污泥与混合液的体积比。反后,沉淀污泥与混合液的体积比。反映曝气池正常运行时的污泥数量,控制运行操作。映曝气池正常运行时的污泥数量,控制运行操作。SV1530%。污泥体积指数污泥体积指数SVISludge Value IndexnSVI:混合液沉淀混合液沉淀30min后,后,1g干污泥所具有的体积干污泥所具有的体积(mL/g)。反映)

4、。反映Sludge疏散程度和凝聚、沉降性能。疏散程度和凝聚、沉降性能。SVI低:沉降好低:沉降好因密度大因密度大,但缺乏活性和吸附能力,但缺乏活性和吸附能力致密,致密,表面积小表面积小。反之,沉降差,不易分离。反之,沉降差,不易分离。SVI50150。环境因素的影响:环境因素的影响:溶解氧溶解氧是一个十分重要的因素,是是一个十分重要的因素,是活性污泥活性污泥法高效运法高效运作的重要条件,只有作的重要条件,只有O2存在,微生物才能进行同化合存在,微生物才能进行同化合成或异化分解。一般要求成或异化分解。一般要求O22mg/L。微生物代谢需要一定的营养质。微生物代谢需要一定的营养质。BOD5表示碳源

5、表示碳源因为因为生化过程中,生化过程中,有机物有机物 BOD5 ,还要,还要N、P。 BOD:N:P100:5:1。PH6.59.0;水温水温2030;要控制有毒物质在;要控制有毒物质在容许浓度下容许浓度下重金属离子和一些非多属化生物等重金属离子和一些非多属化生物等 。曝气池曝气池出水堰曝气池混合液配水进入二沉池 按栖息着的微生物分:活性污泥的组成大量的细菌真菌原生动物后生动物 除活性微生物外,活性污泥还挟带着来自污水的有机物、无机悬浮物、胶体物;活性污泥中栖息的微生物以好氧微生物为主,是一个以细菌为主体的群体,除细菌外,还有酵母菌、放线菌、霉菌以及原生动物和后生动物。 活性污泥中细菌含量一般

6、在107108个/mL;原生动物103个/mL,原生动物中以纤毛虫居多数,固着型纤毛虫可作为指示生物,固着型纤毛虫如钟虫、等枝虫、盖纤虫、独缩虫、聚缩虫等出现且数量较多时,说明培养成熟且活性良好。 干固体和水分含水9899干固体12%MLSSMLVSSNVSS有办法知道确切的生物量吗? 有人曾企图通过直接测定污泥中细胞的DNA量、有机氮量、三磷酸腺苷(ATP)量、脱氢酶的活力等指标去反映活性污泥的活力,这种方法既复杂又不准确,而且微生物的含量不断变化。按McKinney的分析: MLSS=Ma+Me+Mi+Mii式中:Ma具备活性细胞成分; Me内源代谢残留的微生物有机体; Mi未代谢的不可生

7、化的有机悬浮固体; Mii吸附的无机悬浮固体。按有机性和无机性成分:处理生活污水的活性污泥MLVSS: 70%MLNVSS: 30% MLSS表示悬浮固体物质总量,MLVSS挥发性固体成分表示有机物含量,MLNVSS灼烧残量,表示无机物含量。 MLVSS包含了微生物量,但不仅是微生物的量,由于测定方便,目前还是近似用于表示微生物的量。MLVSS: 一般范围为5575MLNVSS: 一般范围为2545污泥沉降比:SV活性污泥的沉降浓缩性能 取混合液至1000mL或100mL量筒,静止沉淀30min后,度量沉淀活性污泥的体积,以占混合液体积的比例(%)表示污泥沉降比。污泥体积指数:SVI SV不能

8、确切表示污泥沉降性能,故人们想起用单位干泥形成湿泥时的体积来表示污泥沉降性能,简称污泥指数,单位为mL/g。活性污泥法的基本流程 活性污泥降解污水中有机物的过程 活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段:吸附阶段稳定阶段 由于活性污泥具有巨大的表面积,而表面上含有多糖类的黏性物质,导致污水中的有机物转移到活性污泥上去。 主要是转移到活性污泥上的有机物为微生物所利用。活性污泥降解污水中有机物的过程污水与污泥混合曝气后BOD的变化曲线 曲线反映污水中有机物的去除规律; 曲线反映活性污泥利用有机物的规律; 曲线反映了活性污泥吸附有机物的规律。 这三条曲线反映出,在曝气过程中:

9、污水中有机物的去除在较短时间( 图中是5h左右)内就基本完成了(见曲线); 污水中的有机物先是转移到(吸附)污泥上(见曲线),然后逐渐为微生物所利用(见曲线); 吸附作用在相当短的时间(图中是45min左右)内就基本完成了(见曲线); 微生物利用有机物的过程比较缓慢(见曲线)。 第二节 气体传递和曝气池 活性污泥法的三个要素构成 一是引起吸附和氧化分解作用的微生物,也就是活性污泥; 二是废水中的有机物,它是处理对象,也是微生物的食料; 三是溶解氧,没有充足的溶解氧,好氧微生物既不能生存,也不能发挥氧化分解作用。气 体 传 递 原 理 双膜理论的基点是认为在气液界面存在着二层膜(即气膜和液膜)这

10、一物理现象。 这两层薄膜使气体分子从一相进入另一相时受到了阻力。当气体分子从气相向液相传递时,若气体的溶解度低,则阻力主要来自液膜。曝气的作用与曝气方式曝气的作用与曝气方式 曝气作用:1.好氧微生物的需氧代谢2.兼性微生物酶的好氧合成3.混合液的搅拌作用曝气方式:1.鼓风曝气系统2.机械曝气装置:纵轴表面曝气机、横轴表面曝气器3.鼓风+机械曝气系统4.其他:富氧曝气、纯氧曝气 曝 气 设 备 鼓风曝气机械曝气空气净化器 鼓 风 机 空气输配管系统 扩 散 器 竖式曝气机表面曝气机卧式曝气机鼓风曝气空气净化器 鼓 风 机 空气输配管系统 扩 散 器 鼓风机供应压缩空气 风量要满足生化反应所需的氧

11、量和能保持混合液悬浮固体呈悬浮状态。 风压要满足克服管道系统和扩散器的摩阻损耗以及扩散器上部的静水压。罗茨鼓风机:适用于中小型污水厂,噪声大,必须采取消音、隔音措施离心式鼓风机:噪声小,效率高,适用于大中型污水厂鼓风曝气空气净化器 鼓 风 机 扩 散 器 扩散器的作用是将空气分散成空气泡,增大空气和混合液之间的接触界面,把空气中的氧溶解于水中。空气输配管系统小气泡扩散器中气泡扩散器大气泡扩散器微气泡扩散器扩散器的类型微孔曝气设备微孔曝气盘 微孔曝气设备安装 微孔曝气设备的清水检验 微孔曝气设备的运行状况 机械曝气:表面曝气机 表面曝气机充氧原理: (1)曝气设备的提水和输水作用,使曝气池内液体

12、不断循环流动, 从而不断更新气液接触面, 不断吸氧; (2)曝气设备旋转时在周围形成水跃,并把液体抛向空中,剧烈搅动而卷进空气; (3)曝气设备高速旋转时,在后侧形成负压区而吸入空气。机械曝气:表面曝气机 曝气的效率取决于:曝气机的性能曝气池的池形倒伞形平板形泵 形 这类曝气机的转动轴与水面平行,主要用于氧化沟 。竖式曝气机卧式曝气刷泵 形倒伞形平板形 曝 气 设 备 性 能 指 标 比较各种曝气设备性能的主要指标 氧转移率:单位为mg(O2)/(Lh)。 充氧能力(或动力效率):即每消耗1kWh动力能传递到水中的氧量(或氧传递速率),单位为kg(O2)/(kWh)。 氧利用率:通过鼓风曝气系

13、统转移到混合液中的氧量占总供氧的比例,单位为。曝气池的三种池型推流式曝气池完全混合式曝气池两种池型结合式推流式曝气池 推流式曝气池的长宽比一般为510; 进水方式不限;出水用溢流堰。1.平面布置 推流式曝气池的池宽和有效水深之比一般为12。2.横断面布置根据横断面上的水流情况,可分为推流式曝气池推流式曝气池鼓风曝气完全混合曝气池第三节 活性污泥法的发展和演变 传统活性污泥法 渐 减 曝 气分 步 曝 气完全混合法浅 层 曝 气深 层 曝 气高负荷曝气或变形曝气克 劳 斯 法延 时 曝 气接触稳定法氧 化 沟纯 氧 曝 气活性污泥生物滤池(ABF工艺)吸附生物降解工艺(AB法)序批式活性污泥法(

14、SBR法)活性污泥法的多种运行方式有机物去除和氨氮硝化在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。实际情况是:前半段氧远远不够,后半段供氧量超过需要。渐减曝气的目的就是合理地布置扩散器,使布气沿程变化,而总的空气量不变,这样可以提高处理效率。 渐 减 曝 气 渐 减 曝 气 把入流的一部分从池端引入到池的中部分点进水。 分 步 曝 气 分布曝气示意图 完 全 混 合 法 在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,长条形池子中也能做到完全混合状态。完全混合的概念 (1)池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同。

15、(2)入流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是像推流中仅仅由部分回流污泥来承担。完全混合池从某种意义上来讲,是一个大的缓冲器和均和池,在工业污水的处理中有一定优点。(3)池液里各个部分的需氧量比较均匀。 完全混合法的特征 完 全 混 合 法 浅 层 曝 气 特点:气泡形成和破裂瞬间的氧传递速率是最大的。在水的浅层处用大量空气进行曝气,就可以获得较高的氧传递速率。 1953年派斯维尔(Pasveer)的研究:氧在10静止水中的传递特征,如下图所示。 浅 层 曝 气 扩散器的深度以在水面以下0.60.8m范围为宜,可以节省动力费用,动力效率可达1.8

16、2.6kg(O2) / kWh。可以用一般的离心鼓风机。浅层曝气与一般曝气相比,空气量增大,但风压仅为一般曝气的1/41/6左右,约10kPa,故电耗略有下降。曝气池水深一般34m,深宽比1.01.3,气量比3040m3/(m3 H2O.h)。浅层池适用于中小型规模的污水厂。由于布气系统进行维修上的困难,没有得到推广利用。 深 层 曝 气 深井曝气法处理流程深井曝气池简图一般曝气池直径约16m,水深约1020m。深井曝气法深度为50150m,节省了用地面积。在深井中可利用空气作为动力,促使液流循环。深井曝气法中,活性污泥经受压力变化较大,实践表明这时微生物的活性和代谢能力并无异常变化,但合成和

17、能量分配有一定的变化。深井曝气池内,气液紊流大,液膜更新快,促使KLa值增大,同时气液接触时间延长,溶解氧的饱和度也由深度的增加而增加。当井壁腐蚀或受损时,污水可能会通过井壁渗透,污染地下水。 深 层 曝 气 部分污水厂只需要部分处理,因此产生了高负荷曝气法。 曝气池中的MLSS约为300500mg/L,曝气时间比较短,约为23h,处理效率仅约65左右,有别于传统的活性污泥法,故常称变形曝气。 高负荷曝气或变形曝气 克劳斯工程师把厌氧消化的上清液加到回流污泥中一起曝气,然后再进入曝气池,克服了高碳水化合物的污泥膨胀问题,这个方法称为克劳斯法。 消化池上清液中富有氨氮,可以供应大量碳水化合物代谢

18、所需的氮。 消化池上清液夹带的消化污泥相对密度较大,有改善混合液沉淀性能的功效。 克 劳 斯 法 延时曝气的特点:曝气时间很长,达24h甚至更长,MLSS较高,达到30006000mg/L;活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放;适用于污水量很小的场合,近年来,国内小型污水处理系统多有使用。 延 时 曝 气 接 触 稳 定 法 混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有,因此,把这种方法称为接触稳定法,也叫吸附再生法。混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用。直接用于原污水的处理比用

19、于初沉池的出流处理效果好;可省去初沉池;此方法剩余污泥量增加。 接 触 稳 定 法 氧化沟是延时曝气法的一种特殊形式,它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。曝气装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用,沟中混合液流速约为0.30.6m/s,使活性污泥呈悬浮状态。 氧 化 沟 纯氧代替空气,可以提高生物处理的速度。纯氧曝气池的构造见右图。 纯 氧 曝 气 纯氧曝气的缺点是纯氧发生器容易出现故障,装置复杂,运转管理较麻烦。 在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推动力也随着提高,氧传递速率增加了,因而处理效果好,污泥的沉淀性也好。纯氧曝气并没有改变活性污泥或微生

20、物的性质,但使微生物充分发挥了作用。活性污泥生物滤池(ABF工艺) 上图为ABF的流程,在通常的活性污泥过程之前设置一个塔式滤池,它同曝气池可以是串联或并联的。塔式滤池滤料表面附着很多的活性污泥,因此滤料的材质和构造不同于一般生物滤池。滤池也可以看作采用表面曝气特殊形式的曝气池,塔是一外置的强烈充氧器。因而ABF可以认为是一种复合式活性污泥法。活性污泥生物滤池(ABF工艺)吸附生物降解工艺(AB法)A级以高负荷或超高负荷运行,B级以低负荷运行,A级曝气池停留时间短,3060min,B级停留时间24h。该系统不设初沉池,A级曝气池是一个开放性的生物系统。A、B两级各自有独立的污泥回流系统,两级的

21、污泥互不相混。处理效果稳定,具有抗冲击负荷和pH变化的能力。该工艺还可以根据经济实力进行分期建设。吸附生物降解工艺(AB法)序批式活性污泥法(SBR法) SBR工艺的基本运行模式由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。 (1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备; (2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池; (3)反应推动力大,易于得到优于连续流系统的出水水质; (4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效

22、果; (5)污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀; (6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。 序批式活性污泥法(SBR法)SBR工艺与连续流活性污泥工艺相比的优点 (1)容积利用率低; (2)水头损失大; (3)出水不连续; (4)峰值需氧量高; (5)设备利用率低; (6)运行控制复杂; (7)不适用于大水量。 序批式活性污泥法(SBR法)SBR工艺的缺点第四节 二次沉淀池 二次沉淀池的功能要求1.澄清(固液分离)2.污泥浓缩(使回流污泥的含水率降低,回流污泥的体积减少)二沉池的实际工作情况 (1)二沉池中普遍存在着四个区:)二

23、沉池中普遍存在着四个区:清水区、絮凝区、成层沉降区、压缩区。清水区、絮凝区、成层沉降区、压缩区。两个界面:泥水界面和压缩界面。两个界面:泥水界面和压缩界面。 (2)混合液进入二沉池以后,立即)混合液进入二沉池以后,立即被稀释,固体浓度大大降低,形成一个被稀释,固体浓度大大降低,形成一个絮凝区。絮凝区上部是清水区,两者之絮凝区。絮凝区上部是清水区,两者之间有一泥水界面。间有一泥水界面。 (3)絮凝区后是一个成层沉降区,在此区内,固体浓度基本不变,)絮凝区后是一个成层沉降区,在此区内,固体浓度基本不变,沉速也基本不变。絮凝区中絮凝情况的优劣,直接影响成层沉降区中沉速也基本不变。絮凝区中絮凝情况的优

24、劣,直接影响成层沉降区中泥花的形态、大小和沉速。泥花的形态、大小和沉速。 (4)靠近池底处形成污泥压缩区。)靠近池底处形成污泥压缩区。二沉池的实际工作情况 二沉池的澄清能力与混合液进入池后的絮凝情况密切相二沉池的澄清能力与混合液进入池后的絮凝情况密切相关,也与二沉池的表面面积有关。关,也与二沉池的表面面积有关。 二沉池的浓缩能力主要与污泥性质及泥斗的容积有关。二沉池的浓缩能力主要与污泥性质及泥斗的容积有关。 对于沉降性能良好的活性污泥,二沉池的泥斗容积可以对于沉降性能良好的活性污泥,二沉池的泥斗容积可以较小。较小。二次沉淀池的构造和计算二次沉淀池在构造上要注意以下特点: (1)二次沉淀池的进水

25、部分,应使布水均匀并造成有利于絮凝的条件,使泥花结大。 (2)二沉池中污泥絮体较轻,容易被出流水挟走,要限制出流堰处的流速,使单位堰长的出水量不超过10m3/(m h)。 (3)污泥斗的容积,要考虑污泥浓缩的要求。在二沉池内,活性污泥中的溶解氧只有消耗,没有补充,容易耗尽。缺氧时间过长可能影响活性污泥中微生物的活力,并可能因反硝化而使污泥上浮,故浓缩时间一般不超过2h。二次沉淀池的容积计算方法可用下列两个公式反映:式中:A澄清区表面积,m2;qv废水设计流量,用最大时流量,m3/h;u沉淀效率参数,m3/(m2h)或m/h;V污泥区容积,m3;r最大污泥回流比;t污泥在二次沉淀池中的浓缩时间,

26、h。 二次沉淀池的构造和计算trqVuqAvvtrqVuqAvv第五节 活性污泥法系统设计和运行中的一些重要问题水力负荷有机负荷微生物浓度曝气时间微生物平均停留时间(MCRT)氧传递速率回流污泥浓度回流污泥率曝气池的构造十、pH和碱度十一、溶解氧浓度十二、污泥膨胀及其控制流向污水厂的流量变化 一、水 力 负 荷 一天内的流量变化随季节的流量变化雨水造成的流量变化泵的选择不当造成的流量变化水力负荷的变化影响活性污泥法系统的曝气池和二次沉淀池。当流量增大时,污水在曝气池内的停留时间缩短,影响出水质量,同时影响曝气池的水位。若为机械表面曝气机,由于水面的变化,它的运行就变得不稳定。对二次沉淀池为水力

27、影响。 一、水 力 负 荷 二、有机负荷率N 污泥负荷率污泥负荷率NN和和MLSSMLSS的的设计值采用得大一些,曝气池所需设计值采用得大一些,曝气池所需的体积可以小一些。的体积可以小一些。但出水水质要降低,而且使剩余污泥量增多,增加了污泥但出水水质要降低,而且使剩余污泥量增多,增加了污泥处置的费用和困难,同时,整个处理系统较不耐冲击,造处置的费用和困难,同时,整个处理系统较不耐冲击,造成运行中的困难。成运行中的困难。为避免剩余污泥处置上的困难和保持污水处理系统的稳定为避免剩余污泥处置上的困难和保持污水处理系统的稳定可靠,可以采用低的污泥负荷率(可靠,可以采用低的污泥负荷率(0.1),把曝气池

28、建得),把曝气池建得很大,这就是延时曝气法。很大,这就是延时曝气法。 曝气区容积的计算,设计中要考虑的主要问题是如何确曝气区容积的计算,设计中要考虑的主要问题是如何确定污泥负荷率定污泥负荷率N N 和和MLSSMLSS的设计值。的设计值。 三、微生物浓度 在设计中采用高的MLSS并不能提高效益,原因如下: 其一,污泥量并不就是微生物的活细胞量。曝气池污泥量的增加意味着泥龄的增加,泥龄的增加就使污泥中活细胞的比例减小。 其二,过高的微生物浓度使污泥在后续的沉淀池中难以沉淀,影响出水水质。 其三,曝气池污泥的增加,就要求曝气池中有更高的氧传递速率,否则,微生物就受到抑制,处理效率降低。采用一定的曝

29、气设备系统,实际上只能够采用相应的污泥浓度,MLSS的提高是有限度的。 四、曝 气 时 间 在通常情况下,城市污水的最短曝气时间为在通常情况下,城市污水的最短曝气时间为3h3h或更长或更长些,这和满足曝气池需氧速率有关。些,这和满足曝气池需氧速率有关。 当曝气池做得较小时,曝气设备是按系统的负荷峰值当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用费,设备的能力不能得到充分利用。 若曝气池做得大些,可降低需氧速率,同时由于负荷若曝气池做得大些,可降低需氧速率,同时由于负

30、荷率的降低,曝气设备可以减小,曝气设备的利用率得到提率的降低,曝气设备可以减小,曝气设备的利用率得到提高。高。 五、微生物平均停留时间(MCRT)(又称泥龄) 每日排放的剩余污泥量工作着的活性污泥总量微生物平均停留时间 微生物平均停留时间至少等于水力停留时间,此时,曝气池内的微生物浓度很低,大部分微生物是充分分散的。 微生物的停留时间应足够长,促使微生物能很好地絮凝,以便重力分离,但不能过长,过长反而会使絮凝条件变差。 微生物平均停留时间还有助于说明活性污泥中微生物的组成。世代时间长于微生物平均停留时间的那些微生物几乎不可能在该活性污泥中繁殖。 六、氧 传 递 速 率 氧传递速率要考虑二个过程

31、要提高氧的传递速率氧传递到水中氧真正传递到微生物的膜表面必须有充足的氧量必须使混合液中的悬浮固体保持悬浮状态和紊动条件七、回流污泥浓度 回流污泥浓度是活性污泥沉降特性和回流污泥回流速率的函数。 按右图进行物料衡算,可推得下列关系式:式中:sa曝气池中的MLSS,mg/L;sr回流污泥的悬浮固体浓度,mg/L;r 污泥回流比。 根据上式可知,曝气池中的MLSS不可能高于回流污泥浓度,两者愈接近,回流比愈大。限制MLSS值的主要因素是回流污泥的浓度。 SrSaSavvSrv1)(rrrqqrq 衡量活性污泥的沉降浓缩特性的指标,它是指曝气池混合液沉淀30min后,每单位质量干泥形成的湿泥的体积,常

32、用单位是mL/g。 (1)在曝气池出口处取混合液试样; (2)测定MLSS(g/L); (3)把试样放在一个1000mL的量筒中沉淀30min,读出活性污泥的体积(mL); (4)按下式计算:活性污泥体积指数SVI)g/L(MLSS)mL/L(SVI活性污泥体积SVI的测定七、回流污泥浓度 八、污泥回流率 高的污泥回流率增大了进入沉淀池的污泥流量,增加了二沉池的负荷,缩短了沉淀池的沉淀时间,降低了沉淀效率,使未被沉淀的固体随出流带走。 活性污泥回流率的设计应有弹性,并应操作在可能的最低流量。这为沉淀池提供了最大稳定性。九、曝气池的构造 推流式曝气池完全混合式曝气池示踪剂的研究表明:推流式曝气池

33、的纵向混合很严重氧消耗率的数据表明:氧的传递受到限制处理量小时,只配有一个机械曝气机,很容易围绕曝气机形成混合区处理量大时,曝气池也相应增大,曝气池不是充分完全混合的十、pH和碱度 活性污泥pH通常为6.58.5。 pH之所以能保持在这个范围,是由于污水中的蛋白质代谢后产生碳酸铵碱度和从天然水中带来的碱度所致。 工业污水中经常缺少蛋白质,因而产生pH过低的问题。工业废水中的有机酸通常在进入曝气池前进行中和。 生活污水中有足够的碱度使pH保持在较好的水平。 十一、溶解氧浓度 通常溶解氧浓度不是一个关键因素,除非溶解氧浓度跌落到接近于零。只要细菌能获得所需要的溶解氧来进行代谢,其代谢速率就不受溶解氧的影响。 一般认为混合液中溶解氧浓度应保持在0.52mg/L,以保证活性污泥系统的正常运行。 过分的曝气使氧浓度得到提高,但由于紊动过于剧烈,导致絮状体破裂,使出水浊度升高。 特别是对于好氧速度不快而泥龄偏长的系统,强烈混合使破碎的絮状体不能很好地再凝聚。十二、污泥膨胀及其控制 正常的活性污泥沉降性能良好,其污泥体积指数SVI在50150之间;当活性污泥不正常时,污泥不易沉

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论