面板数据的F检验,固定效应检验_第1页
面板数据的F检验,固定效应检验_第2页
面板数据的F检验,固定效应检验_第3页
面板数据的F检验,固定效应检验_第4页
面板数据的F检验,固定效应检验_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、面板数据模型(PANEL DATA)F检验,固定效应检验1 .面板数据定义。时间序列数据或截面数据都是一维数据。例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上白数据。面板数据( panel data )也称时间序列截面数据(time series and cross section data )或混合数据(pool data )。面板数据是同时在时间和截 面空间上取得的二维数据。面板数据示意图见图 1。面板数据从横截面(cross section ) 上看,是由若干个体(entity, unit, individual )在某一时刻构成的截面观测值,从纵剖 面(longit

2、udinal section )上看是一个时间序列。面板数据用双下标变量表示。例如“,i = 1,2,,N t = 1,2,,TN表示面板数据中含有 N个个体。T表示时间序列的最大长度。若固定 t不变,y-,( i = 1, 2,,N)是横截面上的 N个随机变量;若固定i不变,y.t, ( t = 1,2,,T)是纵剖面 上的一个时间序列(个体)。图1N=7 , T=50的面板数据示意图例如1990-2000年30个省份的农业总产值数据。 固定在某一年份上, 它是由30个农业总产 总值数字组成的截面数据;固定在某一省份上,它是由 11年农业总产值数据组成的 一个时 间序列。面板数据由 30个个

3、体组成。共有 330个观测值。对于面板数据yit , i = 1,2,,N; t = 1,2,,T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data )。若在面板数据中丢失若干个观测值,则称此面板数据为非平衡 面板数据(unbalanced panel data )。精选范本,供参考!注意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估计模型。例1 (file:panel02 ) : 1996-2002年中国东北、华北、华东 15个省级地区的居民家庭人均消费(不变价格

4、)和人均收入数据见表1和表2。数据是7年的,每一年都有15个数据,共105组观测值。人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。人均消费和收入的面板数据从纵剖面观察分别见图2和图3。从横截面观察分别见图 4和图5。横截面数据散点图的表现与观测值顺序有关。图4和图5中人均消费和收入观测值顺序是按地区名的汉语拼音字母顺序排序的。表 11999-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费数据(小艾价格)地区人均消费1996199719981999200020012002CP-AH (安徽)3282.4663646.1503777.4103989.5814203.5

5、554495.1744784.364CP-BJ (北京)5133.9786203.0486807.4517453.7578206.2718654.43310473.12CP-FJ (福建)4011.7754853.4415197.0415314.5215522.7626094.3366665.005CP-HB (河北)3197.3393868.3193896.7784104.2814361.5554457.4635120.485CP-HLJ (黑龙江)2904.6873077.9893289.9903596.8393890.5804159.0874493.535CP-JL (吉林)2833.3

6、213286.4323477.5603736.4084077.9614281.5604998.874CP-JS (江苏)3712.2604457.7884918.9445076.9105317.8625488.8296091.331CP-JX (江西)2714.1243136.8733234.4653531.7753612.7223914.0804544.775CP-LNI (辽宁)3237.2753608.0603918.1674046.5824360.4204654.4205402.063CP-NMG(内蒙古)2572.3422901.7223127.6333475.9423877.345

7、4170.5964850.180精选范本,供参考!CP-SD (山东)3440.6843930.5744168.9744546.8785011.9765159.5385635.770CP-SH (上海)6193.3336634.1836866.4108125.8038651.8939336.10010411.94CP-SX (山西)2813.3363131.6293314.0973507.0083793.9084131.2734787.561CP-TJ (天津)4293.2205047.6725498.5035916.6136145.6226904.3687220.843CP-ZJ (浙江)5

8、342.2346002.0826236.6406600.7496950.7137968.3278792.210资料来源:中国统计年鉴1997-2003。表21999-2002年中国东北、华北、华东 15个省级地区的居民家庭人均收入数据(不变价格)地区人均收入1996199719981999200020012002IP-AH(安徽)4106.2514540.2474770.4705178.5285256.7535640.5976093.333IP-BJ(北京)6569.9017419.9058273.4189127.9929999.70011229.6612692.38IP-FJ(福建)4884

9、.7316040.9446505.1456922.1097279.3938422.5739235.538IP-HB(河北)4148.2824790.9865167.3175468.9405678.1955955.0456747.152IP-HLJ(黑龙江)3518.4973918.3144251.4944747.0454997.8435382.8086143.565IP-JL(吉林)3549.9354041.0614240.5654571.4394878.2965271.9256291.618IP-JS(江苏)4744.5475668.8306054.1756624.3166793.43773

10、16.5678243.589IP-JX(江西)3487.2693991.4904209.3274787.6065088.3155533.6886329.311IP-LN(辽宁)3899.1944382.2504649.7894968.1645363.1535797.0106597.088IP-NMG (内蒙古)3189.4143774.8044383.7064780.0905063.2285502.8736038.922IP-SD(山东)4461.9345049.4075412.5555849.9096477.0166975.5217668.036精选范本,供参考!IP-SH(上海)7489.

11、4518209.0378773.10010770.0911432.2012883.4613183.88IP-SX(山西)3431.5943869.9524156.9274360.0504546.7855401.8546335.732IP-TJ(天津)5474.9636409.6907146.2717734.9148173.1938852.4709375.060IP-ZJ(浙江)6446.5157158.2887860.3418530.3149187.28710485.6411822.00资料来源:中国统计年鉴1997-2003。图2 15个省级地区的人均消费序列(纵剖面)图3 15个省级地区的

12、人均收入序列(file:4panel02 )图4 15个省级地区的人均消费散点图图5 15个省级地区的人均收入散点图(7个横截面叠加)(每条连线表示同一年度 15个地区的消费值)(每条连线表示同一年度 15个地区的收入值)用 CP表示消费,IP 表示收入。AH, BJ, FJ, HB, HLJ, JL, JS, JX, LN, NMG, SD, SH, SX,TJ, ZJ分别表示安徽省、北京市、福建省、河北省、黑龙江省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、山东省、上海市、山西省、天津市、浙江省。15个地区7年人均消费对收入的面板数据散点图见图6和图7。图6中每一种符号代表一个省级地区

13、的7个观测点组成的时间序列。相当于观察15个时间序列。图7中每一种符号代表一个年度的截面散点图(共7个截面)。相当于观察 7个截面散点图的叠加。图6 用15个时间序列表示的人均消费对收入的面板数据图7 用7个截面表示的人均消费对收入的面板数据(7个截面叠加)精选范本,供参考!为了观察得更清楚一些,图8给出北京和内蒙古 1996-2002年消费对收入散点图。从图中可以看出,无论是从收入还是从消费看内蒙古的水平都低于北京市。内蒙古2002年的收入与消费规模还不如北京市 1996年的大。图9给出该15个省级地区1996和2002年的 消费对收入散点图。可见 6年之后15个地区的消费和收入都有了相应的

14、提高。图8 北京和内蒙古1996-2002年消费对收入时序图图9 1996和2002年15个地区的消费对收入散点图2 .面板数据的估计。用面板数据建立的模型通常有3种。即混合估计模型、固定效应模型和随机效应模型。2.1 混合估计模型。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS估计参数。如果从时间和截面看模型截距都不为零,且是一个相同的常数,以二变量模型为例,则建立如下模型,yit = a +b xit +e",i = 1,2,,N t = 1,2,,T(1)a和b1不随i, t变

15、化。称模型(1)为混合估计模型。以例1中15个地区1996和2002年数据建立关于消费的混合估计模型,得结果如下:图10精选范本,供参考!EViwes估计方法:在打开工作文件窗口的基础上,点击主功能菜单中的 Objects键,选NewObject功能,从而打开 NewObject (新对象)选择窗。在 Type of Object选择区选择 Pool (混合数据库),点击 OK键,从而打开Pool (混合数据)窗口。在窗口中输入 15个地区标识AH(安徽)、BJ (北京)、ZJ (浙江)。工具栏中点击Sheet键,从而打开 SeriesList (列写序列名)窗口,定义变量CP和IP?,点击O

16、K键,Pool (混合或合并数据库)窗口显示面板数据。在 Pool窗口的工具栏中点击 Estimate键,寸T开Pooled Estimation (混 合估计)窗口如下图。图11在Dependent Variable (相依变量)选择窗填入 CP?在Commoicoefficients(系数相同)选择窗填入ip?; Cross section specific coefficients(截面系数不同)选择窗保持空白;在Intercept (截距项)选择窗点击 Common Weighting (权数)选择窗点击 No weighting 。 点击Pooled Estimation(混合估计)

17、窗口中的OK键。得输出结果如图 10。相应表达式是=129.6313 +0.7587 IPit(2.0)(79.7)R = 0.98, SSE = 4824588, to.05(103)= 1.9915个省级地区的人均支出平均占收入的76%如果从时间和截面上看模型截距都为零,就可以建立不含截距项的( a = 0)的混合估计模 型。以二变量模型为例,建立混合估计模型如下,yit = b1 xit +et,i = 1,2,,N; t = 1,2,,T(2)对于本例,因为上式中的截距项有显著性( t = 2.0 > t 0.05 (103) = 1.99 ),所以建立截距项 为零的混合估计模型

18、是不合适的。精选范本,供参考!EViwes估计方法:在 Pooled Estimation(混合估计)对话框中Intercept(截距项)选择窗中选None,其余选项同上。2.2 固定效应模型。在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixedeffects regression model )。固定效应模型分为 3种类型,即个体固定效应模型( entity fixed effects regression model)、时刻固定效应模型(time fixed effects regr

19、ession model)和时刻个体固定效 应模型 t time and entity fixed effects regression model)。 下面分另1J介绍。(1)个体固定效应模型。个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显著性变化,那么就应该建立个体固定效应模型,表示如下,yit = b1 xit +g1 WW + 改 W + + gN WN +eit,t = 1,2,,T(3)其中W=eit, i = 1,2,,N t = 1,2,,T,表示随机误差项。yit, xit, i = 1,

20、2,,N t=1,2,,T分别表示被解释变量和解释变量。模型(3)或者表示为y1t = g1 +b1 x1t + e1t,i = 1 (对于第1个个体,或时间序列), t = 1,2,精选范本,供参考!y2t = g2 +bi X2t +e2 t,i = 2 (对于第2个个体,或时间序列), t = 1,2,,TyN t = gN +bi xn t +e n t,i = N (对于第 N个个体,或时间序列), t = 1, 2,,T写成矩阵形式,yi = ( 1 Xi) + ei = gi + Xi b + eiyN = ( ixn) + eN = gN + x n b +eN上式中yi, g

21、i,ei,Xi都是N'1阶列向量。b为标量。当模型中含有k个解释变量时,b为k' 1阶列向量。进一步写成矩阵形式,=+ b +上式中的元素i, 0都是T' 1阶列向量。面板数据模型用 OLS方法估计时应满足如下5个假定条件:(1) E(eit|Xii, x i2,,x iT, ai) = 0。以 Xii, x i2,XiT, ai 为条件的 et 的期望等于零。(2) (Xii, x i2,,X订),(yii, yi2,,y r), i = i, 2,,N分别来自于同一个联合分布总体,并相互独立。(3) (Xit, eit)具有非零的有限值 4阶矩。(4)解释变量之间不

22、存在完全共线性。(5) Cov(eit eis|Xit,Xis, a) = 0, t i s。在固定效应模型中随机误差项eit在时间上是非自相关的。其中Xit代表一个或多个解释变量。精选范本,供参考!对模型(1)进彳T OLS古计,全部参数估计量都是无偏的和一致的。模型的自由度是 NT 1 - M当模型含有k个解释变量,且 N很大,相对较小时,因为模型中含有 k + N个被估参数,一般软件执行 OLS运算很困难。在计量经济学软件中是采用一种特殊处理方式进行OLS估计。估计原理是,先用每个变量减其组内均值,把数据中心化( entity-demeaned ),然后用变换的数据先估计个体固定效应模型

23、的回归系数(不包括截距项),然后利用组内均值等式计算截距项。这种方法计算起来速度快。具体分3步如下。(1)首先把变量中心化(entity-demeaned )。仍以单解释变量模型(3)为例,则有=gi + bi + ,i = 1,2,,N(4)其中= ,= ,=, i = 1,2,,No公式(1)、(4)相减得,(yit - ) =b1( xit - ) + ( eit-)(5)令(y - ) =, (xit - ) = , (eit -)=,上式写为=b1+(6)用OLS法估计(1)、(6)式中的b,结果是一样的,但是用(6)式估计,可以减少被估 参数个数。(2)用OLS法估计回归参数(不包

24、括截距项,即固定效应)。精选范本,供参考!在k个解释变量条件下,把用向量形式 表示,则利用中心化数据,按OLS法估计公式计算个体固定效应模型中回归参数估计量的方差协方差矩阵估计式如下,(1)一1其中=,是相对于的残差向量。(3)计算回归模型截距项,即固定效应参数gio(8)以例1 (file:panel02 )为例得到的个体固定效应模型估计结果如下:注意:个体固定效应模型的EViwes输出结果中没有公共截距项。图12EViwes 估计方法:在 EViwes 的 Pooled Estimation对话中!中 Intercept 选项中选 Fixedeffects 。其余选项同上。注意:(1)个体

25、固定效应模型的EViwes输出结果中没有公共截距项。(2) EViwes输出结果中没有给出描述个体效应的截距项相应的标准差和t值。不认为截距项是模型中的重要参数。(3)当对个体固定效应模型选择加权估计时,输出结果将给出加权估计和非加权估计两种 统计量评价结果。精选范本,供参考!(4)输出结果的联立方程组形式可以通过点击View选Representations功能获得。(5)点击View选 Wald Coefficient Tests功能可以对模型的斜率进行Wald检验。(6)点击 View 选 Residuals/Table, Graphs, Covariance Matrix, Correl

26、ation Matrix功能可以分别得到按个体计算的残差序列表,残差序列图,残差序列的方差协方差矩阵,残差序列的相关系数矩阵。(7)点击Procs选MakeModel功能,将会出现估计结果的联立方程形式,进一步点击Solve键,在随后出现的对话框中可以进行动态和静态预测。输出结果的方程形式是=安徽 + X1t = 479.3 + 0.70X1t(55.0)=北京 + X2t = 1053.2 + 0.70X2t(55.0)=浙?i+ X15t = 714.2 + 0.70X15t(55.0)F2 = 0.99,SSE = 2270386,10.05 =1.98从结果看,北京、上海、浙江是消费函

27、数截距(自发消费)最大的3个地区。相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过F检验来完成。原假设H0:不同个体的模型截距项相同(建立混合估计模型)。备择假设H:不同个体的模型截距项不同(建立个体固定效应模型)。F统计量定义为:精选范本,供参考!(9)F=其中SSE, SSE分别表示约束模型(混合估计模型)和非约束模型(个体固定效应模型)的残差平方和。非约束模型比约束模型多了N-1个被估参数。(混合估计模型给出公共截距项。)注意:当模型中含有 k个解释变量时,F统计量的分母自由度是NT-N-ko用上例计算,已知 SSE= 4824588 , SSE = 2270386 ,F=

28、 = = = 7.15Fo.05(14, 89) = 1.81因为F= 7.15> F 0.05(14, 89) = 1.81 ,所以,拒绝原假设。结论是应该建立个体固定效应模型。(2)时刻固定效应模型。时刻固定效应模型就是对于不同的截面(时刻点)有不同截距的模型。 如果确知对于不同的截面,模型的截距显著不同,但是对于不同的时间序列(个体)截距是相同的,那么应该建立时刻固定效应模型,表示如下,yit = b1 Xit +a1 + a2 D2 + + a? DT- +eit, i = 1,2, ,N(10)其中D =e", i = 1,2,,N t = 1,2,丁,表示随机误差项

29、。yit , xit, i = 1,2,,N t=1,2,,T分别表示被解释变量和解释变量。模型(10)也可表示为精选范本,供参考!yi i = ai +bi Xii + ei i,t = 1,(对于第 1 个截面),i = 1, 2,,Nyi2 = ( a +a2)+ bi Xi2 + ei2,t = 2 ,(对于第 2个截面),i = i, 2,,NyiT = (ai+aT)+bixr +er,t =T,(对于第T个截面),i = i, 2,,N如果满足上述模型假定条件,对模型(2)进行OLS估计,全部参数估计量都具有无偏性和一致性。模型的自由度是 N T - T-i o图i3EViwes

30、 估计方法:在 Pooled Estimation(混合估计)窗口中的Dependent Variable (相依变量)选才i窗填入 CP?;在Commoncoefficients(系数相同)选择窗填入 IP?和虚拟变量 Di997, Di998, Di999, D2000, D200i, D2002;在 Cross section specific coefficients(截面系数不同)选择窗保持空白;在Intercept (截距项)选择窗点击Common在Weighting(权数)选择窗点击Noweighting。点击Pooled Estimation (混合估计)窗口中的 OKtt。以

31、例i为例得到的时刻固定效应模型估计结果如下:= 网 + Xii = i08.5057 + 0.7789 Xii(i.5)(74.6)=i997 + Xi 2 = i08.5057 +28.i273 + 0.7789Xi2(i.5)(0.4)(74.6)精选范本,供参考!2002 + Xi7 = 108.5057 -199.8213 + 0.7789Xi7(1.(5) (0.4)(74.(6)F2 = 0.9867,SSEE = 4028843, to.05(97)= 1.98相对于混合估计模型来说,是否有必要建立时刻固定效应模型可以通过F检验来完成。H):对于不同横截面模型截距项相同(建立混合

32、估计模型)。H:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。F统计量定义为:F= =(11)其中SSE, SSE分别表示约束模型(混合估计模型的)和非约束模型(时刻固定效应模型的)的残差平方和。非约束模型比约束模型多了T-1个被估参数。注意:当模型中含有 k个解释变量时,F统计量的分母自由度是 NT-T- ko用上例计算,已知 SSE= 4824588 , SSE= 4028843 ,F= = = = 3.19Fd.05(6, 87)=2.2因为F= 3.19> F 0.05(14, 89) = 2.2 ,拒绝原假设,结论是应该建立时刻固定效应模型。(3)时刻个体固定效应模型

33、。时刻个体固定效应模型就是对于不同的截面(时刻点)、不同的时间序列(个体)都有不同截距的模型。如果确知对于不同的截面、不同的时间序列(个体)模型的截距都显著地不相同,那么应该建立时刻个体效应模型,表示如下,精选范本,供参考!yit = bi Xit +ai+&D + +aT Dr+giW+g2W+ gN V+et, i =1,2,,N, t = 1,2,(12)其中虚拟变量D =(注意不是从1开始)W=(注意是从1开始) , i = 1,2,,N t = 1,2,,T,表示随机误差项。yi t , x , ( i = 1,2,,N;t = 1,2,,T)分别表示被解释变量和解释变量。模

34、型也可表示为yn =a1 + g1 +bx* +e*,t = 1, i = 1(对于第 1个截面、第1个个体)y21 =a1 + g2 +b1X21 +e21,t = 1, i = 2(对于第 1个截面、第2个个体)yNi = a1 + gN +b1 xm + ew,个个体)y12 = ( a1 + a2) + g1 +b X12 + e12,个个体)y22 = ( a1 + a2) + g2 +b X22 + e22,个个体)t = 1 , i = N (对于第1个截面、第Nt = 2 , i = 1 (对于第2个截面、第1=2 (对于第2个截面、精选范本,供参考!yN2 = ( ai +

35、a2)+ gN +bi xn2 + eN2,个体)t = 2 , i = N (对于第2个截面、第N个yiT = ( ai +aT)+ gi +b X12 + eiT, 个个体)y2T = ( ai +aT)+ g2 +b X22 + e2T, 个个体)t = T, i = i (对于第T个截面、第it = T, i = 2 (对于第T个截面、第2yNT =( ai + aT) + gN+bi xnt + eNT,个体)t = T, i = N (对于第T个截面、第 N个如果满足上述模型假定条件,对模型(i2)进彳TOLS估计,全部参数估计量都是无偏的和一致的。模型的自由度是 NT- Nl-T

36、o注意:当模型中含有k个解释变量时,F统计量的分母自由度是NT- N - T- k+io以例i为例得到的截面、时刻固定效应模型估计结果如下:图i4EViwes 估计方法:在 Pooled Estimation(混合估计)窗口中的 Dependent Variable (相依变量)选才i窗填入CP?;在Commoncoefficients(系数相同)选择窗填入IP?和虚拟变量 Di997, Di998, Di999, D2000, D200i, D2002;在 Cross section specific coefficients(截面系数不同)选择窗保持空白;在 Intercept(截距项)选

37、择窗中选Fixed effects ;在 Weighting (权数)选择窗点击 No weighting。点击Pooled Estimation(混合估计)窗 口中的OKB。精选范本,供参考!注意:(1)对于第1个截面(t=1) EViwes输出结果中把(ai + g) ( i = 1,2,,N估计在一 起。(2)对于第2,,T个截面(t=1) EViwes输出结果中分另1J把(a +at), ( t = 2,,T) 估计在一起。输出结果如下:=1996 + X11 = 537.9627 + 0.6712 xn,(1996年安徽省)=1996 + X21 = 1223.758 + 0.671

38、2X21,( 1996年北京市)=1997 + xii = 98.91126 + 0.6712 X11,(1997年安徽省)=1997 + X21 = 98.91126 +1223.758 + 0.6712X21,( 1997 年北京市)=2002 + + X15,7 = (183.3882 +870.4197) + 0.6712 xi5,i , ( 2002 年浙江省)R2 = 0.9932,SSE = 2045670, t0.05 g=1.98相对于混合估计模型来说,是否有必要建立时刻个体固定效应模型可以通过F检验来完成。H:对于不同横截面,不同序列,模型截距项都相同(建立混合估计模型)。

39、H:不同横截面,不同序列,模型截距项各不相同(建立时刻个体固定效应模型)。精选范本,供参考!F统计量定义为:F=(13)其中SSE, SSE分别表示约束模型(混合估计模型的)和非约束模型(时刻个体固定效应模型的)的残差平方和。非约束模型比约束模型多了N+T个被估参数。注意:当模型中含有 k个解释变量时,F统计量的分母自由度是 NT-N-T- k+1。用上例计算,已知 SSE= 4824588 , SSE= 2045670 ,F= = = = 5.6Fo.05(20, 81) = 1.64因为F= 5.6> Fo.05(14, 89) = 1.64 ,拒绝原假设,结论是应该建立时刻个体固定

40、效应模型。(4)随机效应模型在固定效应模型中采用虚拟变量的原因是解释被解释变量的信息不够完整。也可以通过对误差项的分解来描述这种信息的缺失。yit = a + b1 xit +et(14)其中误差项在时间上和截面上都是相关的,用3个分量表示如下。精选范本,供参考!eitu i + Vt +w(15)其中UiN(0,Su2)表示截面随机误差分量;vtN(0,Sv2)表示时间随机误差分量;wtN(0,Sw2)表示混和随机误差分量。同时还假定Ui, vt, w之间互不相关,各自分别不存在截面自相关、时间自相关和混和自相关。上述模型称为随机效应模型。随机效应模型和固定效应模型比较,相当于把固定效应模型

41、中的截距项看成两个随机变量。一个是截面随机误差项(Ui), 一个是时间随机误差项(Vt)。如果这两个随机误差项都服 从正态分布,对模型估计时就能够节省自由度,因为此条件下只需要估计两个随机误差项的均值和方差。假定固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,而且对均值的离差分别是 Ui和Vt,固定效应模型就变成了随机效应模型。为了容易理解,先假定模型中只存在截面随机误差项Ui,不存在时间随机误差分量( vt),yit = a + bi xit + ( wt + u i) = a + bi xit+eit(16)截面随机误差项Ui是属于第个个体的随机波动分量,并在整个时间

42、范围(t = 1,2,,T)保持不变。随机误差项 Ui, wt应满足如下条件:E(Ui) =0,E(wt ) = 0E(wt 2) = s w2,E(Ui2)= Su2,E(wt Uj) =0,包括所有的 i , t, j。精选范本,供参考!E(wt Wjs) =0, i 1 j , t 1 sE(Ui u j) =0, i 1 j因为根据上式有©t = wt + u i所以这种随机效应模型又称为误差分量模型( error component model )。有结论,E(eit ) = E( w +uj) = 0,(16)式,yit= a + bxit+ (wt+ui),也可以写成y

43、it = ( a + ui) + bxit+wt。服从正态分布的截距项的均值效应au被包含在回归函数的常数项中。E(eit 2) = E( w +uj)2 = sw2 +su2,E(eite is) = E(wt +u i)(ws +u i) = E(wtwis+ u i wis +witu i + ui 2)=su2,t 1 s令ei = ( ei1, e 2,er)'则W= E( ei ei')=Sw2 I (TT) + Su2 1 (T 1) 1(T 1)'其中I(T丁)是(T'D阶单位阵,1(T'1是(T 1)阶列向量。因为第i期与j期观测值是相

44、互独立的,所以NT个观测值所对应的随机误差项的方差与协方差矩阵V是V = = ? W = Inn ?W其中Inn表示由(T 1)阶列向量为元素构成的单位阵,其中每一个元素1或0都是(T 1)阶列向量。?表示科罗内克积(Kronecker product )。其运算规则是精选范本,供参考!An k?B =检验个体随机效应的原假设与检验统计量是H): su2 = 0。(混合估计模型)H: Su2 1 0。(个体随机效应模型)LM=其中表示由个体随机效应模型计算的残差平方和。表示由混合估计模型计算的残差平方和。统计量LMI艮从1个自由度的c2分布。可以对随机效应模型进行广义最小二乘估计。以观测值方差

45、的倒数为权。为了求权数,必须采用两阶段最小二乘法估计。因为各随机误差分量的方差一般是未知的,第一阶段用普通最小二乘估计法对混合数据进行估计(采用固定效应模型)。用估计的残差计算随机误差分量的方差。第二步用这些估计的方差计算参数的广义最小二乘估计值。如果随机误差分量服从的是正态分布,模型的参数还可以用极大似然法估计。仍以例1为例给出随机效应模型估计结果如下:图15注意:随机效应模型 EViwes输出结果中含有公共截距项。图16以例1为例,用个体随机效应模型和混合模型计算的统计量的值是LM= = =8.75 ' (24.4) 2 = 5209F0.05(1) = 3.84因为F= 5209

46、 > F0.05=3.84,所以拒绝原假设,结论是应该建立个体随机效应模型。精选范本,供参考!假定截面截距和时间截距都是随机的。分别服从均值为au和av,方差为su2和sv2的正态分布。随机误差项将由3部分组成,并有方差。Var( eit) = Var( Ui) + Var( vt) + Var( wt) = Su2 + Sv2+s;当su2和sv2都等于零,随机效应模型退化为固定效应模型。随机效应模型和固定效应模型哪一个更好些?实际是各有优缺点。随机效应模型的好处是节省自由度。对于从时间序列和截面两方面上看都存在较大变化的数据,随机效应模型能明确地描述出误差来源的特征。固定效应模型的好

47、处是很容易分析任意截面数据所对应的因变量 与全部截面数据对应的因变量均值的差异程度。此外,固定效应模型不要求误差项中的个体效应分量与模型中的解释变量不相关。当然,这一假定不成立时,可能会引起模型参数估计的不一致性。(5)回归系数不同的面板数据模型当认为对于不同个体,解释变量的回归系数存在显著性差异时,还可以建立回归系数不同的面板数据模型。EViwes 估计方法:在 Pooled Estimation(混合估计)窗口中的 Dependent Variable (相依变量)选才I窗填入 CP?;在Common coefficients (系数相同)选择窗保持空白(如果需 要估计时刻固定效应也可输入

48、虚拟变量D1997, D1998, D1999, D2000, D2001, D2002);在 Cross section specific coefficients(截面系数不同)选择窗填入 IP?;在 Intercept(截距项)选择窗中选 Fixed effects (也可以做其他选择);在 Weighting (权数)选择 窗点击No weighting (也可以做其他选择)。点击 Pooled Estimation (混合估计)窗口中 的OK键。图17精选范本,供参考!安徽 + Xit = 161.62 + 0.76Xit(9.1)=北京 + X2t = 36.22 + 0.81X2

49、t(31.0)=浙?i+ X15t = 1328.26 + 0.63X15t(21.1)F2 = 0.995,SSE = 1409247用EViwes建立面板数据估计模型步骤。利用19962002年15个省级地区城镇居民家庭年人均消费性支出和年人均收入数据(不变价格数据)介绍面板数据模型估计步骤。(1)建立混合数据库(Pool)对象。首先建立工作文件。在打开工作文件窗口的基础上,点击EViwes主功能菜单上的 Objects键,选New Object功能(如图18),从而打开 New Object (新对象)选择窗。在 Type ofObject选择区选择Pool (合并数据库),并在 Name of Object选择区为混合数据库起名Pool01 (初始显示为 Untitled )。如图19,点击OK键,从而打开混合数据库 (Pool)窗口。在窗口中输入15个地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论