小升初数学知识点及奥数知识点汇总情况_第1页
小升初数学知识点及奥数知识点汇总情况_第2页
小升初数学知识点及奥数知识点汇总情况_第3页
小升初数学知识点及奥数知识点汇总情况_第4页
小升初数学知识点及奥数知识点汇总情况_第5页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用标准文案大全( 长度单位) : 1 千米 =1000 米单位换算米=10分米分米=10厘米1厘米=10毫米1 米=100厘米角=10分年=12月 月1 元=100分: 1 平方千米 =100公顷1平方米=100平方分米1平方厘米=100平方毫米: 1 立方米 =1000立方分米1 立方分米 =1 升 1 立方厘米 =1 毫升( 重量单位) : 1 吨 =1000 千克公斤人民币换算单位: 1 元=10角时间单位换算: 1 世纪 =100年大月(31 天)有1/3/5/7/8/10/12小月(30 天)有4/6/9/11 月平年 2 月 28 天,闰年 2 月 29 天。平年一年1 米=10

2、00毫米1公顷=10000平方米1平方分米=100平方厘米立方分米=1000立方厘米立方分米=1 升千克 =1000 克 1 千克 =1365 天,闰年一年366 天。一般的能被4 整除的年份为闰年(如 2012年、 2016年) ,整百时能被400 整除为闰年(如 2000年,1600 年) 。1 日=24小时 1时=60分1 分=60秒 1 时=3600秒方向:上北下南,左西右东。运算法则: 有括号的先算括号, 没有括号的先算乘除再算加减,同级运算从左往右运算 (加 减运算是第一级,乘除运算是第二级运算,第二级运算高于第一级运算。 )常用数量关系等式1 .份数:每份数X份数=总数份数2 .

3、 1倍数X倍数=几倍数数3 .速度x时间=路程总数+每份数=份数几倍数+倍数=1倍数路程+速度=时间总价+数量=单价总数一份数=每几倍数+ 1倍数=倍路程+时间=速度 总价+单价=数量5.工作效率X工作时间=工作总量工作总量+工作效率=工作时间工作总量+工作时间=工作效率6.加数+加数=和 被减数一减数=差 因数x因数=积 被除数+除数=商和一1个加数=另一个加数被减数一差=«数差+减数=被减数积+ 一个因数=另一个因数被除数+商=除数 商X除数=被除数1.正方形(C:周长 S图形计算公式:面积 a :边长)4 .单价X数量=总价周长=边长X 4 (C=4a2.长方形(C:周长 S面

4、积=4长x边长(S=ax a):面积 a :长 b :宽)周长=(长 +宽)x 2 (C=2 (a+b)面积=长乂宽(S=ax b)3 .三角形(S:面积 a :底 h :高)面积=底高+2 (S=ax h + 2)三角形高=面积X2+底三角形底=面积X2+高a :棱长)体积=棱长x棱长x棱长a :长 b :宽 h 2 (S= (axb+ax h+bx h) x 2)(V=ax a4 .正方体(V:体积 S :表面积 表面积=棱长x棱长x 6 (S=ax ax 6) x a)5 .正方体(V:体积 S :表面积 表面积=(长X宽+长X高+宽X高)X 体积=长乂宽X高(V=ax bxh)6 .平

5、行四边形(S:面积 a :底 h :高)面积=底 高 (S=ax高)高=面积+底底=面积+高7 .梯形(S:面积 a :上底 b :下底 h :高)面积=(上底+下底)x高+ 2 S=(a+b) xh + 28 .圆形(S:面积 C :周长 冗d :直径 r :半径)直径=半径X2 (d=rX2)周长=兀X直径=2X兀X半径(C=tt x d=2X兀Xr)面积= ttX半径x半径(S=tt XrXr)9 .圆柱体(V:体积 S :底面积 r :底面半径c :底面周长 h :高)侧面积=底面周长x高=cx h (c=2x冗x r=d x冗)表面积=侧面积+底面积体积=侧面积+ 2X半径h :高)

6、体积=底面积x高(V=Sx h=兀x r x r x h)10 .圆锥(V:体积 S :底面积 r :底面半径实用标准体积二底面积x高+ 3 (V=SX h+3=Tt x r x r x h+3)奥数常用公式1、平均数:总数+总份数=平均数,总数+平均数=总份数,平均数x总份数=总数2、 和差问题3、 和(问题4、 差(问题5、 相遇问题(和+差)+2=大数, 和+ (倍数+1)=小数, 差+ (倍数-1)二小数,(和一差)+ 2=小数小数x倍数二 大数,(和一小数=大数) 小数X倍数二大数,(差一小数二大数)6、 追及问题 :7、 流水问题:8、 浓度问题:相遇路程=速度和x相遇时间, 速度

7、和=相遇路程+相遇时间 追及距离=速度差x追及时间, 速度差=it及路程+追及时间=静水速度+水流速度,相遇时间=相遇路程+速度和追及时间二追及距离+速度差逆流速度=静水速度水流速度+溶剂的重量=溶液的重量溶质的重量+溶液的重量x 100%=S度,溶液的重量X浓度=溶质的重量, 溶质的重量+浓度=溶液的重量9、利润与折扣问题:利润=售出价一成本,利润率=利润+成本x 100%=(售出价+成本1) X100%涨跌金额=本金X涨跌百分比利息=本金X利率X时间,税后利息=本金X利率X时间X ( 120%10、盈亏问题:(盈+亏)+两次分配量之差=参加分配的份数(大盈一小盈)+两次分配量之差=参加分配

8、的份数(大亏一小亏)+两次分配量之差=参加分配的份数11、火车过桥:过桥时间=(车长+桥长)+车速火车追及:追及时间=(甲车长+乙车长+距离)+ (甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)+ (甲车速+乙车速)12、行船问题定义: 行船问题也就是与航行有关的问题。 解答这类问题要弄清船速与水速,船速是船只本身航行的速度, 也就是船只在静水中航行的速度; 水速是水流的速度;船只顺水航行的速度(顺水速度)是船速(水速之(;船只逆水航行的速度(逆水速度)是船速(水速之差。船速=(顺水速度+ 逆水速度)+ 2水速=(顺水速度-逆水速度)+ 213、工程问题定义: 工程问题主要研究工

9、作量、 工作效率(工作时间三者之间的关系。 这类问题在已知条件中常常不给出工作量的具体数量, 只提出 “一项工程” 、 “一块土地” 、 “一件工作”等,在解题时候,常常用单位“ 1”表示工作总量。数量关系: 解答工程问题的关键是把工作总量看作“ 1” , 工作效率就是工作时间的倒数 (它表示单位时间内完成工作总量的几分之几) , 进而就可以根据工作量、工作效率、工作时间三者之间关系列出算式。 工作量=工作效率X工作时间 工作时间二工作量+工作效率工作时间二总工作量+ (甲工作效率+乙工作效率)14、正反比例问题1、 正比例关系 :两种相关联的量,一种量变化,另一种辆也随着变化,如果这两种量中

10、向对应的两个数的比值, 即 商一定 , 那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。2、 反比例关系 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中对应的两个数的 积一定 , 这两种量就叫做成反比例的量, 它们的关系叫做反比例关系。15、按比例分配问题比的前后项相加求出总份数, 各部分占总份数的几分之几, 再用总量乘以几分之几即得各部分量的值。16、百分比问题1、定义:百分数又叫百分率。是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需约分。分数的分子、 分母必须是自然数, 百分数的分子可以是小数; 百分数有一个

11、专门的记号“ %”2、数量关系: 百分数=比较量+标准量 标准量=比较量+百分数17、商品利润问题1、 定义: 在生产经营中, 销售价格高于进货价的叫盈利, 低于进货价的叫亏本,主要包括成本、利润、利润率和亏损、亏损率等方面的问题。2、数量关系: 利润 =售价 - 进货价 利润率=(售价-进货价)+进货价X 100%售价=进货价X ( 1+利润率) 亏损 =进货价 - 售价 亏损率=(进货价-售价)+进货价X 100%18、存款利率问题1、定义:把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。 利率一般有年利率和月利率两种。 年利率是指存期一年本金所生利息占本金的百分

12、数;月利率是指存期一月所生利息占本金的百分数。2、数量关系:年(月)利率=利息+本金+存款年(月)数x 100%利息二本金X存款年(月)数X年(月)利率 本利和二本金+利息=本金X 1+年(月)利率X存款年(月)数 19、牛吃草问题1、 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题” 。这类问题的 特点在于要考虑草边吃边增加(或边吃边减少)这个因素。2、数量关系: 草总量=原有草量+草每天增加量X天数 草总量二原有草量-草每天减少量X天数20、方阵问题1、定义:将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总 人数或总物数,这类应用题叫做方阵问题。2、数量关系:方阵每边

13、人数与四周人数关系:四周人数二(每边人数-1) X4每边人数=四周人数+ 4+1方阵总人数的求法:实心方阵:总人数=每边人数X每边人数空心方阵:总人数=(外边人数)2 -(内边人数)2内边人数二外边人数-层数X 2 (实际无人)内层每边人数=内层人数+ 4-1 (实际无人) 若将空心方阵分成四个相等的矩形计算,则:总人数二(每边人数-层数)X层数X 43、方阵问题有实心和空心两种。实心方阵的求法是以每边的数自乘;空心方阵 的变化较多,其解答方法应根据具体情况确定。21、时钟问题1、定义:时钟问题就是研究钟面上时针和分针关系的问题,如两针重合(0度)、两针垂直(15格)、两针成一线(0格或30格

14、)、两针夹角成60度(10格)、120 度(20格)等。时钟问题可与追及问题相类比。2、数量关系:分针速度是时针的12倍钟面的一周为60格,每格6° ;每个数字间隔为5格,为30°。分针每分钟走1格,为6° ;时针每分钟走格,为0.5°。1222、幻方问题1、定义:把nxn个自然数排在正方形的格子中,使各行、各列以及对角线上的 各数之和都相等,这样的图叫幻方。最简单的幻方是三阶幻方。2、数量关系:每行、每列、每条对角线上的各数和都相等,这个和叫做“幻和”。 三阶幻方的幻和中间数的3倍; 五阶幻方的幻和中间数的5倍。23、概率和频率1、频率:在一次试验中某

15、一事件出现的次数与试验总数的比值。2、概率:某一事件所固有的性质。3、频率是变化的,每次试验可能不同,概率是稳定值不变。4、在一定条件下频率可以近似代替概率。24、小数、分数、百分数混合运算1、定义真分数:分子小于分母的分数;假分数:分子大于或者等于分母的分数;带分数:是假分数的另一种形式,由整数和真分数组成;最简比:是最简单的整数比,前项和后项都是整数而且互质;比值:是一个数,可以是整数、分数、小数。2、分数四则运算分数加减:a.同分母分数:分母不变,分子相加减b.异分母分数:同分(找分母的最小公倍数)c.带分数加减:整数+/-整数,分数+/-分数分数乘除:a.乘法:分子x分子,分母x分母,

16、能约分的先在过程中约分b.除法:除以一个数等于乘以它的倒数3、分数、小数、百分数的互化分数化为小数:用分子除以分母;小数化为分数:小数数字不变,有几位小数分母就添几个“ 0”,最后化简;小数与百分数互换:小数点左右移动两位;分数百分数互化:通过将分母化为 100转换。4、分数四则混合运算中的技巧运算顺序:先括号,再乘除,最后加减 减变加不变,除变乘不变:当括号前面是“-”或“ + ”时,添去括号时, 括号里面一定要变号。25、小数和分数转换问题1、小数转换为分数纯循环小数化为分数:循环节是几位就用几个“ 9”作为分母;循环节作 为分子;再化简。混循环小数化为分数:分母:前几位是“9”,位数与循

17、环节相同;后几位 是“0”,位数与不循环部分的数位相同。分子:不循环部分与第一个循环节连成 的数减去不循环部分组成的数。2、分数转换为小数分母只含有2或5的因数的最简分数,可以化为有限小数。 分母含有2或5以外的因数的最简分数,可以化为混循环小数。 分母只含有2和5以外的质因数(不包括2和5),可以化为纯循环小数。26、图形相关问题一、公式:1、三角形面积:S二1底x高22、圆面积:S=hr21 C3、圆锥体积:V=-nR2H34、正方体、长方体有:6个面、12条棱、8个角。5、勾股定理:在一个直角三角形中,两条直角边的平方和等于斜边的平方。27、排列组合1、定义排列:从n个不同元素中取出m(

18、mc n)个元素进行排序,所有排列的个数n!用 A(n,m )或 An 表小。An =n(n1)(n2).(n m + 1)=(n - m)!规定 0!=1 (n! =n(n-1)(n-2)1,例如 6! =6x5x4x3x2x1) 组合:从n个不同元素中取出m(mc n)个元素,不考虑排序。所有组合的Am个数用 C(n,m)或Cn 表小。Cn =*: C(n, m)=C(n,m! m!(n-m)!n-m) o (n>m)2、基本计数原理 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同 的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不 同的方法,那

19、么完成这件事共有 N=m1+m2+m3+mn种不同方法。 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方 法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完 成这件事共有N=mK m2X m3X乂 mn种不同的方法。28、等差数列1、定义:一个数列中,如果从第二项起,每一项与它前面一项的差都相等,这 样的数列叫做等差数列。相邻两项的差叫做这个等差数列的公差。项数=(末项-首项)+公差+1首项=末项-(项数-1 ) x公差末项=首项+ (项数-1 ) x公差和二(首项+末项)x项数+ 22、相关公式:(1 n) n 1+2+3+n=-22 n (n 1) (

20、2n 1) 1+4+9+16+n =-6奥数中的植树问题1、非封闭线路上的植树问题,主要可以分为以下三种情形:(1)如果在非封闭线路的两端都要植树,那么:株数二段数+1= 全长+株距+1,全长=株距>< (株数一1),株距=全长+ (株数 1)( 2)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数二段数=全长+株距,全长二株距X株数,株距=全长+株数( 3)如果在非封闭线路的两端都不要植树,那么:株数二段数一1二 全长+株距一1,全长二株距X (株数+1),株距=全长+ (株数+1)2、封闭线路上的植树问题株数二段数二全长+株距,全长二株距X株数,株距二全长+株数奥数中的

21、方程1、定义:把题目中的未知数用 X 代替,根据等量关系列出含有未知数的方程,通过解方程得到答案。2、数量关系:方程两边数量相等。3、解方程的基本方法:利用等式的基本性质,在方程两边同加,同减,同乘,同除来解得未知数的值。4、解题过程可以概括为“审、设、列、解、验、答”六字法 审: 认真审题, 弄清应用题中的已知量和未知量各是什么, 问题中的等量关系是什么。 设:把应用题中的未知数设为 x 。 列:根据所设的未知数和题目中的已知条件,按照等量关系列出方程。 解:求出所列方程的解。 验:检验方程的解是否正确,是否符合题意。 答:回答题目所问,也就是写出答问的话。在列方程解应用题是,一般设未知数、

22、列方程、解方程、答语。必须检验。注意: 设未知数时要在X 后面写上单位名称, 在方程中已知数和未知数都不带单位名称,求出的 X 值也不带单位名称,在答语中要写出单位名称。文案大全奥数中的常用数据及规律1、圆周率常取数据:2、常用特殊的乘积:125X3=375 1253.14 X 1=3.143.14 X 5=15.73.14 X 9=28.2625X3=7525 X 4=10025 X 8=200X 4=500125 X 8=1000 625 X 16=10000 37 X 3=1113、常用平方数:112=121_2 _16=25617252=625 352 _=2891812 2=1442

23、=3242=1225 45 2=20251319552=169I =361=30251420652=196 15 2=4002=42252=2254、关于常用分数与小数的互化:2=0.5=0.411 =0.25 43 一”0.65=0.7541 -=0.2 53 3=0.3758 =0.1520=0.0425=0.24255、常用立方数13=163=216585-5 =0.625-=0.8751 =0.058820=0.35=0.4511 =0.55202020=0.08=0.12=0.162525253=833=2743=6453=1253=34383=51293=729=0.125274

24、- =0.81基本概念第一章 数和数的运算一 概念(一)整数1 整数的意义 :自然数和 0 都是整数。2 自然数 :我们在数物体的时候,用来表示物体个数的1, 2, 3叫做自然数。一个物体也没有,用 0 表示。 0 也是自然数。3 计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5 数的整除:整数a除以整数b(b w 0),除得的商是整数而没有余数,我们就说a能被 b 整除,或者说 b 能整除 a 。如果数a能被数b (b半0)整除,a就叫

25、做b的倍数,b就叫做a的约数 (或 a 的因数)。倍数和约数是相互依存的。因为 35 能被 7 整除,所以 35 是 7 的倍数, 7 是 35 的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10 的约数有1、 2、 5、 10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的, 其中最小的倍数是它本身。 3 的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。个位上是0、 2、 4、 6、 8 的数,都能被2 整除,例如:202、 480、 304,都能被 2 整除。个位上是 0 或 5 的数,都能被5 整除,例如:5、 30

26、、 405 都能被 5 整除。一个数的各位上的数的和能被 3 整除, 这个数就能被3 整除, 例如:12、 108、204 都能被 3 整除。一个数各位数上的和能被 9 整除,这个数就能被9 整除。能被 3 整除的数不一定能被9 整除,但是能被9 整除的数一定能被3 整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、 404、 1256都能被 4整除,50、 325、 500、 1675都能被 25 整除。一个数的末三位数能被 8(或125)整除,这个数就能被8(或125)整除。例如:1168、 4600、 5000、 12344都能被 8 整除, 1125

27、、 13375、 5000都能被 125整除。能被 2 整除的数叫做偶数。不能被 2 整除的数叫做奇数。0 也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。一个数, 如果只有 1 和它本身两个约数, 这样的数叫做质数 (或素数) , 100 以内的质数有: 2、 3、 5、 7、 11、 13、 17、 19、 23、 29、 31、 37、 41、 43、 47、 53、 59、 61、 67、 71、 73、 79、 83、 89、 97。一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数,例如 4 、 6、 8、 9、 12 都是合数。1 不是质数也不是合数,自然数除了

28、 1 外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和 1。每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3X 5, 3和5叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把 28 分解质因数几个数公有的约数, 叫做这几个数的公约数。 其中最大的一个, 叫做这几个数的最大公约数,例如 12 的约数有 1、 2、 3、 4、 6、 12; 18 的约数有 1、 2、 3、 6、9、 18。其中, 1、 2、 3、 6 是 12 和 1 8 的公约数, 6 是它们的最大公约数。公约数

29、只有1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1 和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数, 叫做这几个数的公倍数, 其中最小的一个, 叫做这几个数的最小公倍数,如 2的倍数有2、4、6、8、10、12、14、16、183的倍数有3、6、9、12、15、18其中6、12、18是2、3的公倍数,6

30、 是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1 小数的意义把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千 分之几 可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几一个小数由整数部分、 小数部分和小数点部分组成。 数中的圆点叫做小数点, 小数点左边的数叫做整数部分, 小数点左边的数叫做整数部分, 小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10

31、。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2 小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。有限小数: 小数部分的数位是有限的小数, 叫做有限小数。 例如: 41.7 、 25.3 、0.23 都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如:4.33 3.1415926 无限不循环小数: 一个数的小数部分, 数字排列无规律且位数无限, 这样的小数叫做无限不循环小数。 例如:n循环小数: 一个数

32、的小数部分, 有一个数字或者几个数字依次不断重复出现, 这个数叫做循环小数。 例如:3.555 0.0333 12.109109一个循环小数的小数部分, 依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是“ 9 ” ,0.5454的循环节是“ 54 ” 。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如:3 .1110.5656混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222 0.03333 写循环小数的时候, 为了简便, 小数的循环部分只需写出一个循环节, 并在这个循环节的首、 末位数字上各点一个圆点。 如果循环 节只有 一个数

33、字, 就只在它的上面点一个点。例如:3.777 简写作0.5302302 简写作 。(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数, 叫做分母, 表示把单位 “ 1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2 分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于 1。假分数: 分子比分母大或者分子和分母相等的分数, 叫做假分数。 假分数大于或等于 1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3 约分和

34、通分把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1 表示一个数是另一个数的百分之几的数 叫做百分数, 也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。二 方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的 0 都不读出来,其它数位连续有几个0 都只读一个零。2. 整数的写法: 从高位到低位, 一级一级地写, 哪一个数位上一

35、个单位也没有,就在那个数位上写 0。3. 小数的读法: 读小数的时候, 整数部分按照整数的读法读, 小数点读作 “点” ,小数部分从左向右顺次读出每一位数位上的数字。4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面

36、加上百分号“%”来表示。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是125430 万;改写成 以亿做单位 的数 12.543 亿。2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是13 亿。3. 四舍五入法: 要省略的尾数的最高位上的

37、数是4 或者比 4 小, 就把尾数去掉;如果尾数的最高位上的数是5 或者比 5 大, 就把尾数舍去, 并向它的前一位进1。例如: 省略 345900 万后面的尾数约是35 万。 省略 4725097420 亿后面的尾数约是 47 亿。4. 大小比较1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。2. 比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的, 十分位上的数大的那个数就大; 十分位上的数也相同的, 百分位上的数大的那个数就大3. 比较分数的大小

38、: 分母相同的分数, 分子大的分数比较大; 分子相同的数, 分 母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1. 小数化成分数:原来有几位小数,就在1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2. 分数化成小数: 用分母去除分子。 能除尽的就化成有限小数, 有的不能除尽,不能化成有限小数的,一般保留三位小数。3. 一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2 和 5 以外的质因数,这个分数就不能化成有限小数。4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数) ,再把小数化成百分数。7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1. 把一个合数分解质因数,通常用短除法。先用能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论