浙江新高考学考考纲考试标准数学学考选考标准_第1页
浙江新高考学考考纲考试标准数学学考选考标准_第2页
浙江新高考学考考纲考试标准数学学考选考标准_第3页
浙江新高考学考考纲考试标准数学学考选考标准_第4页
浙江新高考学考考纲考试标准数学学考选考标准_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、考试性质与对象浙江省普通高中数学学业水平考试是在教育部指导下,由省教育行政部门组织实施的全面衡量普通高中学生数学学业水平的考试。考试成绩是普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。浙江省普通高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2 次。考试的对象是2014 年秋季入学的高中在校学生,以及相关的往届生、社会人员和外省在我省异地高考学生。二、考核目标、要求与等级( 一 ) 考核目标普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到课程标准所规定的基本要求和所必须具备的数学素养的检测考试。(

2、 二 ) 考核要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平全面检测学生的数学素养。1知识要求知识是指 教学指导意见

3、所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。对知识的要求从低到高分为四个层次,依次为:了解、理解、掌握、综合应用,其含义如下:(1) 了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等。(2) 理解:要求对所列知识内容有较深刻的理性认识知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的

4、能力。这一层次所涉及的主要行为动词有:描述、说明、表达、推测、想象、比较、判别、初步应用等。(3) 掌握:在对知识理解的基础上,通过练习形成技能在新的问题情境中能运用所学知识按基本的模式与常规的方法解决问题。这一层次所涉及的主要行为动词有:掌握、导出、分析、推导、证明、研究、讨论、运用、解决问题等。(4) 综合运用:掌握知识的内在联系与基本属性,能熟练运用有关知识和基本数 学思想方法,综合解决较复杂的数学问题和实际问题。这一层次所涉及的主要行为动词有:熟练掌握,综合解决问题等。2能力要求数学具有严密的逻辑性、结论的确定性和应用的广泛性等特点,在培养学生能力的过程中发挥重要的作用。数学学科考试既

5、要考查基础知识、基本技能、基本思想方法、基本活动经验,又要考查考生的逻辑思维能力、空间想象能力、运算求解能力、数据处理能力、综合应用能力。(1) 逻辑思维能力逻辑思维能力是指通过对事物观察、比较、判断、分析、综合,继而进行归纳、概括、抽象、演绎、推理,准确有条理地表达自己思维过程的能力。逻辑思维能力主要考查能正确领会题意,明确解题目标。能寻找到实现解题目标的方向和合适的解题步骤。能通过符合逻辑的运算和推理,正确地表述解题过程的能力。做到因果关系明晰,陈述层次清楚,推理过程有据。(2) 空间想象能力空间想象能力是指根据空间几何体的图形或几何形体的描述能想象出相应的空间形体的能力;根据想象的空间几

6、何形体,画出相应空间几何体的图形,并能正确描述相应的空间几何形体的能力。对已有的空间几何形体进行分解、组合,产生新的空间几何形体,能正确分析其位置关系与数量关系,并对几何形体的位置关系和数量关系进行论证与求解。空间想象能力主要是通过考查对点、线、面、体与经过简单组合的几何形体和相互间的位置关系的理解、掌握程度同时考查对几何形体进行分析、提取、概括来揭示其本质特征的能力,灵活运用几何形体的特性进行论证与求解的能力。(3) 运算求解能力运算求解能力是指能根据法则、公式进行正确运算、变形的能力;根据问题的条件和目标,寻找多种途径并能比较不同途径的特点,设计较为适合的方法进行运算、变形的能力;根据要求

7、进行估计和近似计算的能力。运算求解能力主要考查对算式进行的计算、变形,对几何图形的几何量的计算求解,对数值的估值和近似计算等的能力。进一步考查对条件分析、方向探究、公式选 择、步骤确定等一系列过程中运算求解的能力。(4) 数据处理能力数据处理能力是指对各种形式的数据进行收集、整理、筛选、分类、计算、操作及分析的能力,能从数据中得出有用的信息,并做出合理判断。(5) 综合应用能力综合应用能力指的是对所提供的信息进行归纳、整理和分类。将实际问题抽象为数学问题的能力;能对具体问题陈述的材料用数学语言正确地表述,用所学的数学知识、思想和方法解决问题的能力;能将一些具体的材料进行归纳、总结、提炼、抽象,

8、从而形成新的认知与方法的能力。3个性品质要求个性品质是指学生个体的情感、态度和价值观。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美好意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。( 三 ) 等级要求数学学业水平考试将考生学业成绩分为A B C D E五个等级,E为不合格,D及以上各等级标准如下:D 等:达到数学

9、水平考试及格的考生,应掌握浙江省普通高中学科( 数学 ) 教学指导意见 ( 简称教学指导意见 ) 规定的普通高中数学必修内容中最基本、最常规的知识和最基本的技能,具有初步的思维能力、运算能力和空间想象能力,初步掌握最基本的数学思想方法,会运用学过的知识按基本的模式和常规的方法解答含较少概念的数学问题,如会解答相当于教科书练习题和习题中的基础题水平的试题。具体要求如下:1能理解基本数学概念,并能判断一些简单命题的真假:对一些较常见的简单数学问题,能通过分析、归纳等方法进行判断,并能依据基本的逻辑规则作简单的推理、论证和用数学语言准确表述。2会运用公式、法则解题。如进行简单的符号运算、函数运算、向

10、量运算和数据处理,会对基本的多项式、指数式、对数式、三角关系式等进行恒等变形;会计算较常见的空间图形中的长度、角度、面积和体积等。3会分析常规位置的一些基本图形中基本元素之间的数量与位置关系:对一些用文字表述的基本图形或一些常见的基本的客观事物,能正确想象其空间形状与位置关系并能画出图形。4能掌握配方法、待定系数法、综合法等会初步运用等价转换、数形结合等思想方法解题。C 等:达到数学水平考试良好的考生,应掌握教学指导意见规定的普通高中数学必修内容中的基本基础知识和基本技能,并初步掌握其内在联系:具有一定的思维能力、运算能力和空间想象能力:较灵活地运用学过知识和技能按基本的模式和常规的方法解答含

11、多个概念的数学问题:基本掌握常用的数学思想方法。具体要求如下:1能理解基本数学概念并能判断一些简单命题的真假:对一些较常见的简单数学问题,能通过分析、归纳等方法进行判断,并能依据基本的逻辑规则作简单的推理、论证和用数学语言准确表述。2会运用公式、法则解题。如进行简单的符号运算、函数运算、向量运算和数据处理,会对基本的多项式、指数式、对数式、三角关系式等进行恒等变形:会计算较常见的空间图形中的长度、角度、面积和体积等。3能正确分析基本图形中基本元素之间的数量与位置关系:对用文字表述的基本图形或一些常见的基本的客观事物。能正确想象其空间形状与位置关系,并能画出图形。4能较好地掌握配方法、待定系数法

12、、综合法等,会初步运用等价转换、数形结合等思想方法解题。B 等:达到数学水平考试良好的考生,应掌握教学指导意见规定的普通高中数学必修内容中的基本基础知识和基本技能,并初步掌握其内在联系;具有一定的思维能力、运算能力和空间想象能力;较灵活地运用学过知识和技能,按基本的模式和常规的方法解答含多个概念的数学问题:掌握基本的数学思想方法。具体要求如下:1 .对一些新情景下的数学问题,能通过分析、综合、归纳、演绎、类比等方法 进行判断和猜测,并能用一定的逻辑规则进行推理、论证和用数学语言准确地表述。2 .能较熟练地运用公式、法则解题。如进行简单的符号运算、函数运算、向量 运算和数据、图表的分析和处理;对

13、多项式、指数式、对数式、三角关系式等能正确 地进行若干步包等变形;较熟练地计算空间图形中的长度、角度、面积和体积,并会 选择合理的方法完成相应的运算。(3)能较熟练地正确分析基本图形中基本元素之间的数量与位置关系,对用文字 表述的基本图形或基本的客观事物,能正确想象其空间形状与位置关系,并能画出图 形。(4)能较熟练地掌握配方法、待定系数法、分析法和综合法,会用反证法,能运 用等价转换、数形结合等思想方法解题。A等:达到数学水平考试优秀的考生,应掌握教学指导意见规定的普通高中数学必 修内容,能系统地掌握其内在联系,并能融会贯通;具有较强的思维能力、运算能 力、空间想象能力和综合应用能力;掌握基

14、本的数学思想方法,能综合运用所学的数 学知识和方法;灵活地解决较复杂的数学问题和实际问题;会从数学的角度发现和提 出问题;进行初步的探索和研究。具体要求如下:1 .对较复杂的数学问题和相关学科、生产、生活中的问题。能正确理解题意, 灵活地运用分析、综合、归纳、演绎、类比等方法进行判断和猜测,确定合理的解题 模式,并能正确运用逻辑规则进行推理、论证和用数学语言准确、清晰地表述。对未 给出结论或结论不确定的问题,能经过抽象和概括分析,猜想、讨论得出结论.并加 以证明。2 .能灵活熟练地运用公式、法则解题。如进行简单的符号运算、函数运算、向 量运算和数据、图表的分析和处理;对多项式、指数式、对数式、

15、三角关系式等能正 确、迅速地进行若干步包等变形;能灵活计算空间图形中的长度、角度、面积和体积 等,并能熟练运用多种方法,合理简单地完成相应的运算,有检验并修正运算结果的 能力。3 .能熟练分析基本图形中基本元素之间的数量与位置关系,通过分析比较,能 选择适当的方式准确地进行文字或符号语言与图形之间的转换,并能排除非本质属性 的干扰,正确识别经过平移、对称、伸缩等位置变换后的基本图形。4 .能熟练掌握配方法、待定系数法、分析法、综合法、反证法等方法,能自觉 运用等价转换、分类讨论、数形结合等思想方法分析和解决问题。三、考试内容根据教学指导意见所规定教学内容和教学要求,确定数学学业水平考试的内 容

16、为必修课程的五个模块,具体的考试单元、知识条目和考试的层级要求如表,其中 a表示“了解”,b表示“理解”,c表示“掌握”,d表示“综合应用”。必修1第一章集合与函数概念单元知识条目考试要求集合1.集合的含义与表示集合的含义(2)集合元素的特性(3)集合的相等(4)集合与元素关系(5)常用数集的记法(6)集合的表示法a a a a a b2.集合间的基本关系子集、真子集的概念(2)空集的概念bb3.集合的基本运算并集的含义(2)交集的含义(3)全集与补集bbb函数 及其 表小1.函数的概念函数的概念(2)函数符号y=f (x)(3)函数的定义域(4)函数的值域(5)区间的概念及其表示法b b b

17、 b a2.函数的表示法函数的解析法表示(2)函数的图象法表示,描点法作图(3)函数的列表法表示(4)分段函数的意义与应用(5)映射的概念b b a b a函数 的基 本性 质1.单调性与最大(小)值 增函数、减函数的概念 (2)函数的单调性、单调区间 (3)函数的最大值和最小值bCC2.奇偶性奇函数、偶函数的概念(2)奇函数、偶函数的性质bC第二章基本初等函数单元知识条目考试要求指数 函数1 .指数与指数募的运算(1)根式的意义(2)分数指数募的意义(3)无理数指数募的意义(4)有理数指数募的运算性质a b aC2.指数函数及其性质指数函数的概念 指数函数的图象(3)指数函数的性质bCC对数

18、 函数1.对数与对数运算对数的概念(2)常用对数与自然对数(3)对数的运算性质(4)对数的换底公式b a C a2.对数函数及其性质对数函数的概念对数函数的图象对数函数的性质(4)指数函数与对数函数的关系bC C a募函数11.募函数(yx, y x2, yx3, y x2, y x 1)(1)募函数的概念(2)募函数的图象aCC第三章函数的应用单元知识条目考试要求1.方程的根与函数的零点a函数与(1)函数零点的概念a方程(2) f(x)=O有实木与y=f(x)有零点的关系(3)图象连续的函数 y=f(x)在(a, b)内有零点的判定方法b1.几类不同增长的函数模型b 指数函数y=ax(a&g

19、t;1)在(0 , +8)的增长速度b 对数函数y=log ax(a>1)在(0 , +8)的增长速度b函数募函数y=x(n>O)在(0,+ 8)的增长速度b模型(4) y=ax(a>1), y=log ax( a>1) , y=xn( n>O)在(0 , +0°)的变化比较及其2.函数模型的应用举例C应用(1)函数在实际问题中的应用(2)根据实际问题建立函数模型C3.函数的综合应用 函数的综合应用d必修2第一章空间几何体单元知识条目考试要求空间 几何 体的 结构1 .柱、锥、台、球的结构特征(1)棱柱、棱锥、棱台的概念(2)棱柱、棱锥、棱台的底面、侧棱

20、、侧面、顶点(3)圆柱、圆锥、圆台、球的概念(4)圆柱、圆锥、圆台的底面、母线、侧面、轴球的球心、半径、直径a a a a a2.简单几何体的结构特征(1)与正方体、球有关的简单几何体及其结构特征根据条件判断几何体的类型bb空间 几何 体的 三视 图和 直观 图1.中心投影和平行投影(1)投影、投影线、投影面的概念(2)中心投影和平行投影的概念aa2.空间几何体的三视图(1)几何体的正视图、侧视图、俯视图、三视图的概念三视图画法的规则画简单几何体的三视图a b b3.空间几何体的直观图(1)斜二测画法的概念斜二测画法的步骤简单几何体的直观图的画法(4)三视图所表示的空间几何体三视图和直观图的联

21、系及相互转化a b ba b空间 几何 体的 表面 积与 体积1.柱体、锥体、台体的表卸积与体积(1)表面积与展开图的关系柱体、锥体、台体表面积公式柱体、锥体、台体体积公式(4)柱体、锥体、台体的关系 三棱柱和三棱锥图形的变化关系a a a a a2.球的表卸积与体积 球的表面积与体积公式a3.组合体的表面积和体积一些简单组合体表面积和体积的计算b第二章 点、直线、平面之间的位置关系单元知识条目考试要求空间点、1.平卸直线、半卸的概念a平卸(2)平卸的画法及表示万法a之间(3)平卸的基本性质,即公埋 l、2、3a的位(4) “文字语言”、“符号语言”、“图形语言”之间的转化b置关系2.空间中直

22、线与直线之间的位置关系异面直线的概念与图形表示(2)公理4(3)等角定理(4)异回直线所成的角(5)两条直线垂直的概念b b b b a3.空间中直线与平面之间的位置关系 ,线与平面的三种位置关系b4.平卸与半卸之间的位置关系 “卸与半卸的位置关系b1 .直线与平卸平仃出J判矩b直线、直线与力F囿半仃的判定定理平面 平行 的判 定及 其性质2.平卸与半卸平行的判定1面与平面平行的判定定理b3.直线与半卸平行的性质C直线与半卸平行的性质定理4.平卸与半卸平行的性质1卸与半卸平行的性质定理C1 .直线与半曲垂直的判定 直线和平面垂直的定义(2)直线与邛卸垂直的判定定理(3)直线与十回所成的角bbb

23、直线、 平面 垂直 的判 定及其性质2.平卸与半卸垂直的判定 二面角及其平曲角的概念(2)二面角的平面角的计算(3)两个平面垂直的定义(4)两个平面垂直的判定定理a b a b3.直线与半曲垂直的性质 “线和平面垂直的性质定理C4.平卸与半卸垂直的性质卸与半卸垂直的性质定理C第三章直线与方程单元知识条目考试要求1 .倾斜角与斜率(1)直线的倾斜角及其取值范围b直线直线的斜率的概念b的倾经过点Pl(x1 , y1) , P(x2 , y2)(x1 *x2)的直线的斜率公式C斜角 与斜率2.两条直线平行与垂直的判定(1)两条直线平行的判定两条直线垂直的判定CC直线 的方程1.直线的点斜式方程 (1

24、)直线的点斜式方程 直线的斜截式方程CC2.直线的两点式方程(1)直线的两点式方程直线的截距式方程(3)平面上两点连线的中点坐标公式b bC3.直线的一般式方程(1)直线的一般式方程直线方程的点斜式、斜截式、两点式等几种形式化疗-般式bC直线 的交 占半 标与 距离 公式1.两条直线的交点坐标(1)两条直线的交点坐标根据直线方程确定两条直线的位置关系C b2.距离(1)平面上两点间的距离公式(2)点到直线的距离公式(3)两平行线距离的求法C Cb第四章圆的方程单元知识条目考试要求圆的 方程1.圆的标准方程(1)圆的标准方程(2)判断点与圆的位置关系C a2.圆的一般方程(1)圆的一般方程 化圆

25、的一般方程为标准方程求曲线方程的基本方法C b b直线、圆的 位置 关系1.直线与圆的位置关系(1)判断直线与圆的位置关系 在已知直线与圆的位置关系的条件下,求直线或圆的方程bC2.圆与圆的位置关系(1)判断圆与圆的位置关系b3.直线与圆的方程的应用(1)利用坐标法来解直线与圆的方程直线与圆的方程的综合应用Cd空间 直角 坐标系1.空间直角坐标系(1)空间直角坐标系及相关概念(2)三维空间的点的坐标表示a b2.空间两点间的距离公式 空间两点间的距离公式b必修4第一章三角函数单元知识条目考试要求任意 角和 弧度 制1 .任亚(1)任意角的概念(2)终边相同的角的表示(3)象限角的概念a b b

26、2.弧度制弧度制的概念(2)弧度与角度的换算(3)圆弧长公式a b a任意 角的 三角 函数1 .任意角的三角函数任意角的正弦函数、余弦函数、正切函数的定义(2)判断各象限角的正弦、余弦、正切函数的符号(3)终边相同的角的同一三角函数值的关系(4)单位圆中的正弦线、余弦线、正切线b bb a2.同角三角函数的基本关系 “角三角函数的两个基本关系b三角函数 的诱导 公式1 .三角函数的诱导公式(1)兀+a与a的正弦、余弦、正切值的关系(2)- a与a的正弦、余弦、正切值的关系(3)兀-a与a的正弦、余弦、正切值的关系(4)3士 a与a的正弦、余弦值的关系b b b b三角 函数 的图 象和 性质

27、1 .正弦函数、余弦函数的图象 ,弦函数、余弦函数的图象b2.正弦函数、余弦函数的性质(1)周期函数的概念(2)正弦函数、余弦函数的周期性与奇偶性(3)正弦函数、余弦函数的递增区间和递减区间(4)正弦函数、余弦函数的最大、最小值aCCC3.正切函数的性质和图象正切函数的周期性与奇偶性(2)正切函数的单调区间(3)正切函数的图象bC by=Asin(3 X+ (J) 的图象1.函数y Asin( x )的图象(1)用五点法画出函数 y Asin( x )的图象(2)函数yAsin(x)与y=sin x的图象间的关系(3)函数yAsin(x)的振幅、周期(4)函数yAsin(x)的频率、相位和初相

28、b bb a三角函数 模型的简 单应用1 .三角函数模型的简单应用,角函数在实际问题中的简单应用b第二章平面向量单元知识条目考试要求平卸1.向量的物理背景与概念b向量向量的概念的背2.向量的几何表示b景及零向量、单位向量、向量的模的概念基本3.相等向量与共线向量b概念相等向量、平行向量、共线向量的概念1.向量加法运算及其几何意义bb(1)向量加法的定义及其几何意义(2)向量加法的交换律与结合律平卸向量2.向量减法运算及其几何意义a b的线相反向量的概念性运算(2)向量减法的定义及其几何意义3.向量数乘运算及其几何意义bb(1)向量的数乘运算(2)向量数乘运算的几何意义1.平卸向量基本定理b(1

29、)平卸向量基本定理平卸内所有向量的一组基底a平卸b向量(3)向量夹角的概念的基2.平面向量的止交分解及坐标表示a b本定(1)正交分解的概念理及(2)向量的坐标表示坐标3.平面向量的坐标运算表小平卸向重的加、减与数乘运算的坐与表小b4.平卸向量共线的坐标表小b平卸向量共线的坐标表小1.平面向量的数量积的物埋背景及具含义b b b平卸(1)平回向量的数量积及其儿何意义向量(2)平面向量的数量积与向量投影的关系(3)平面向量的数量积的性质及运算律2.平卸向量数量积、模、夹角的坐标表示b b b的数(1)数量积的坐标表示量积(2)数量积表7K两个向量夹角的坐标运算(3)平卸向量模的坐标运算平面1.平

30、面几何中的向量方法b向量平卸向量在平卸儿何中的简单应用应用2.向量在物理中的应用举例a举例平卸向量在物埋中的简单应用第三章三角包等变换单元知识条目考试要求两角和1.两角差的余弦公式 两角差的余弦公式证明b与差的2.两角和与差的正弦、余弦、正切公式CC正弦余(1)两角和与差的正弦、余弦公式弦和正(2)两角和与差的正切公式切公式3.二倍角的正弦、余弦、正切公式 二倍角的正弦、余弦、正切公式C简单的1.简单的三角恒等变换C b三角恒利用二角怛等变换研究二角函数的性质等变换(2)能把一些简单实际问题转化为三角问题,通过三角变换解决必修5第一章解三角形单元知识条目考试要求正弦定 理和余 弦定理1.正弦定

31、理正弦定理(2)利用正弦定理解三角形bC2.余弦定理余弦定理(2)利用余弦定理解三角形bC应用 举例1 .应用举例 解三角形在实际问题中的应用(2)三角形面积公式的应用bb第二章数列单元知识条目考试要求数列的 概念与 简单 表小1.数列的概念与简单表示(1)数列的定义数列的几种简单表示(3)数列的递推公式及由递推公式求数列的前几项b a b等差 数列1.等差数列(1)等差数列的概念(2)等差数列的通项公式(3)等差中项(4)等差数列与一次函数的关系b C b a等差 数列 的前 n项 的和1.等差数列的前 n项和(1)等差数列前n项和的公式(2)等差数列的基本量运算(3) S与an的关系(4)

32、等差数列前n项和公式的实际应用CC bC等比 数列1.等比数列(1)等比数列的概念(2)等比数列的通项公式(3)等比中项(4)等比数列与指数函数的关系b C b a等比数列 的前n 项的和1.等比数列前n项的和(1)等比数列前n项和的公式(2)等比数列的基本量运算(3)等比数列前n项和公式的实际应用CCC数列的 综合应用1.数列的综合应用(1) 一些特殊数列的求和(2)数列的综合应用bd第三章不等式单元知识条目考试要求不等 关系 与不 等式1.不等关系与不等式(1)不等关系、不等式(组)的实际背景(2)不等式(组)对于刻画不等关系的意义(3)用不等式(组)表示、研究实际问题的不等关系(4)不等

33、式的基本性质a b b b九 二次 不等 式及 其解法(2) 一元二次不等式及其解法从实际情境中抽象出一元二次不等式模型(3) 一元二次不等式的概念(3)三个二次的关系(4) 一元二次不等式的解法(5) 一元二次不等式的实际应用a b b C C九 一次 不等式(组) 与简 单线 性规 划问题1.二七-次不等式(组)与平面区域 从实际情境中抽象出二行-次不等式模型(2)二天二次不等式(组)的解集的概念(3)二天二次不等式(组)的几何意义(4)平面区域、边界、实线、虚线的含义(5)二k-次不等式(组)表示平面区域a b aa C2.简单的线性规划(1)线性约束条件、目标函数、线性目标函数、线性规

34、划、可行解、可行域、,优解的概念(2)简单的二元线性规划问题的解法aC基本 不等式1 .基本不等式:Jab ab2 a2 b2 2ab、vab 的背景2(2)算术平均数、几何平均数的概念(3)两个正变量的和或积为常数的最值问题(4)基本不等式的实际应用b a C C绝对 值不 等式1 .绝对值不等式绝对值三角不等式的代数证明和几何意义(2)不等式 | a|-| b| < | a+b| < | a|+| b| 及其应用(3)| ax+b| < c和| ax+b| > c型不等式的解法(4)| x-a|+| x-b| < c 和 | x-a|+| x-b| 二 c型不

35、等式的解法bCCC选修2 1第一章常用逻辑用语单元知识条目考试要求命题1.命题命题的概念b2.四种命题a及其命题的逆命题、否命题、逆否命题关系3.四种命题间的相互关系(1)四种命题间的相互关系a b(2)利用互为逆否命题的两个命题之间的关系判断命题的真假充分1.充分条件与必要条件b条件必要条件、充分条件的含义与必2.充要条件b要条件充要条件的含义第二章圆锥曲线与方程单元知识条目考试要求曲线 与方程1.曲线与方程曲线的方程、方程的曲线的概念a2.求曲线的方程求曲线方程的基本方法b椭圆1 .椭圆及其标准方程(1)椭圆的定义(2)椭圆的标准方程(3)椭圆的焦点、焦距的概念C Cb2.椭圆的简单几何性

36、质(1)椭圆的简单几何性质(2)有关椭圆的计算、证明(3)直线与椭圆的位置关系C Cd双曲线1.双曲线及其标准方程(1)双曲线的定义双曲线的标准方程(3)双曲线的焦点、焦距的概念a b b2.双曲线的简单几何性质(1)双曲线的简单几何性质有关双曲线的计算、证明ab抛物线1.抛物线及其标准方程(1)抛物线的定义(2)抛物线的标准方程(3)抛物线的焦点、准线的概念CCC2.抛物线的简单几何性质(1)抛物线的简单几何性质CC(2)有关抛物线的计算、证明(3)直线与抛物线的位置关系d第三章空间向量与立体几何单元知识条目考试要求空间 向量 及其 运算1.空间向量及其加减运算(1)空间向量的意义及相关概念

37、(2)空间向量的加减运算及其运算律a b2.空间向量的数乘运算(1)空间向量的数乘运算及其运算律共线(平彳T )向量、共面向量的意义(3)直线的方向向量b b a3.空间向量的数量积运算(1)空间向量的夹角(2)空间向量的数量积的意义及其运算律bb4.空间向量的正交分解及其坐标表示(1)仝间向重基本TE理及其总义(2)空间向量的正交分解(3)空间向量的坐标表示(4)在简单的问题中选用合适的基底表示其他向量a a b b5.空间向量运算的坐标表示(1)向量的长度公式、空间两点间的距离公式(2)两向量夹角公式bb立体 几何 中的 向量 方法6.立体几何中的向量方法(1)利用空间向量表75空间的点、

38、直线、平面等兀素(2)平面法向量的定义(3)空间向量解决立体几何问题的“三步曲”(4)利用空间向量解决线面位置关系的判定与空间角的计算问题(5)通过选择适当的坐标系.解决简单的立体几何问题b b b C C四、考试形式与试卷结构(一)考试形式闭卷,笔试。试卷满分为100分,考试时间80分钟。(二)考试内容教学指导意见所规定必修课程内容。(三)试卷结构1 .题型比例选择题:占54%;填空题:占15%;解答题:占31%2 .要求比例了解:约占10%;理解:约占40%;掌握:约占40%;综合运用:约占10%3 .难度比例容易题:约占70% 稍难题:约占20% 较难题:约占10%五、题型示例(-) 1

39、 . A. 2.选择题(在每小题给出的四个选项中,只有-项是符合题目要求。已知集合 A=l , 2, 3, 4, B=2A.0个 B . 1个 log 212-log 23=4, 6,则AH B的元素个数是.3个1C. - D23.若右图是-个几何体的三视图,则这个几何体是正视图侧视图A.圆锥 BC.圆柱 D.棱锥4.函数f(x)sin(2x-)(x R)的最小正周期为A.B.c. 2D. 45.2直线x+2y+3=0的斜率是第3题图A.C. -2D-26.A.若x=1满足不等式ax2+2x+1<0,则实数a的取值范围是7.(-3 , +00) 函数f (x)B . (- 8, -3)10g 3(2 x)的定义域是(1 , +00)D.(-°°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论