版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022年普通高考数学科一轮复习精品学案第31讲不等式性质及证明一课标要求:1不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式组的实际背景;2根本不等式:a,b0探索并了解根本不等式的证明过程;会用根本不等式解决简单的最大小问题。二命题走向不等式历来是高考的重点内容。对于本将来讲,考察有关不等式性质的根底知识、根本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。本将内容在复习时,要在思想方法上下功夫。预测2022年的高考命题趋势:1从题型上来看,选择题、填空题都有可能考察,把不等式的性质与函数、三角结合起来综合考察不等式的性质、函数单调性等,多以选择题的
2、形式出现,解答题以含参数的不等式的证明、求解为主;2利用根本不等式解决像函数的单调性或解决有关最值问题是考察的重点和热点,应加强训练。三要点精讲1不等式的性质比较两实数大小的方法求差比较法;。定理1:假设,那么;假设,那么即。说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。定理2:假设,且,那么。说明:此定理证明的主要依据是实数运算的符号法那么及两正数之和仍是正数;定理2称不等式的传递性。定理3:假设,那么。说明:1不等式的两边都加上同一个实数,所得不等式与原不等式同向;2定理3的证明相当于比较与的大小,采用的是求差比较法;3定理3的逆命题也成立; 4不等式中任何
3、一项改变符号后,可以把它从一边移到另一边。定理3推论:假设。说明:1推论的证明连续两次运用定理3然后由定理2证出;2这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;3同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式。定理4如果且,那么;如果且,那么。推论1:如果且,那么。说明:1不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;2两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;3推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说,两
4、个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。推论2:如果, 那么。定理5:如果,那么。2根本不等式定理1:如果,那么当且仅当时取“。说明:1指出定理适用范围:;2强调取“的条件。定理2:如果是正数,那么当且仅当时取“=说明:1这个定理适用的范围:;2我们称的算术平均数,称的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数。3常用的证明不等式的方法1比较法比较法证明不等式的一般步骤:作差变形判断结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。2综合法利用某
5、些已经证明过的不等式例如算术平均数与几何平均数的定理和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件。综合法证明不等式的逻辑关系是:,及从条件出发,逐步推演不等式成立的必要条件,推导出所要证明的结论。3分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。1“分析法是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否
6、具备的问题,即“执果索因;2综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程。四典例解析题型1:考查不等式性质的题目例11如果,那么,以下不等式中正确的选项是 a b c d2设a、b、c是互不相等的正数,那么以下等式中不恒成立的是abc d解析:1答案:a;显然,但无法判断与的大小;2运用排除法,c选项,当ab<0时不成立,运用公式一定要注意公式成立的条件,如果,如果a,b是正数,那么点评:此题主要考查.不等式恒成立的条件,由于给出的是不完全提干,必须结合选择支,才能得出正确的结论。例21设a,b,c,dr,且a>b,c>d,那
7、么以下结论中正确的选项是 a.a+c>b+db.ac>bdc.ac>bd d.2假设a<b<0,那么以下结论中正确的命题是 a和均不能成立b.和均不能成立c.不等式和a+2>b+2均不能成立d.不等式和a+2>b+2均不能成立解析:1答案:a;a>b,c>d,a+c>b+d;2答案:b解析:b<0,b>0,ab>a,又ab<0,a<0,。故不成立。a<b<0,|a|>|b|,故不成立。由此可选b。另外,a中成立.c与d中a+2>b+2成立。其证明如下:a<b<0,<
8、;0,a+<b+<0,|a+|>|b+|,故a+2>b+2。点评:此题考查不等式的根本性质。题型2:根本不等式例3 “ab0”是“ab的 (a)充分而不必要条件 (b)必要而不充分条件(c)充分必要条件 (d)既不允分也不必要条件解析:a;中参数的取值不只是指可以取非负数。均值不等式满足。点评:该题考察了根本不等式中的易错点。例41假设实数a、b满足a+b=2,那么3a+3b的最小值是 a.18 b.6 c.2 d.22假设ab1,p,qlgalgb,rlg,那么 a.rpqb.pqrc.qprd.prq解析:1答案:b;3a+3b2=6,当且仅当a=b=1时取等号。故
9、3a+3b的最小值是6;2答案:b;lgalgb0,lgalgb,即qp,又ab1,lgalgb,即rq,有pqr,选b。点评:此题考查不等式的平均值定理,要注意判断等号成立的条件。题型3:不等式的证明例5a0,b0,且a+b=1 求证 (a+)(b+)。证法一: (分析综合法欲证原式,即证4(ab)2+4(a2+b2)25ab+40,即证4(ab)233(ab)+80,即证ab或ab8 a0,b0,a+b=1,ab8不可能成立1=a+b2,ab,从而得证。证法二: (均值代换法)设a=+t1,b=+t2。a+b=1,a0,b0,t1+t2=0,|t1|,|t2|,显然当且仅当t=0,即a=b
10、=时,等号成立。证法三:(比较法)a+b=1,a0,b0,a+b2,ab,证法四:(综合法)a+b=1, a0,b0,a+b2,ab,。证法五:(三角代换法) a0,b0,a+b=1,故令a=sin2,b=cos2,(0,),点评:比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细表达:如果作差以后的式子可以整理为关于某一个变量的二次式,那么考虑用判别式法证。例6求使a(x0,y0)恒成立的a的最小值。分析:此题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cos、sin来对应进行换元,即令=cos,=sin(0,这样也得asin+
11、cos,但是这种换元是错误的 其原因是:(1)缩小了x、y的范围;(2)这样换元相当于此题又增加了“x、y=1”这样一个条件,显然这是不对的。除了解法一经常用的重要不等式外,解法二的方法也很典型,即假设参数a满足不等关系,af(x),那么amin=f(x)max 假设 af(x),那么amax=f(x)min,利用这一根本领实,可以较轻松地解决这一类不等式中所含参数的值域问题。还有三角换元法求最值用的恰当好处,可以把原问题转化。解法一:由于a的值为正数,将不等式两边平方,得:x+y+2a2(x+y),即2(a21)(x+y),x,y0,x+y2, 当且仅当x=y时,中有等号成立。比较、得a的最
12、小值满足a21=1,a2=2,a= (因a0),a的最小值是。解法二:设x0,y0,x+y2 (当x=y时“=成立),1,的最大值是1。从而可知,u的最大值为,又由,得au,a的最小值为,解法三:y0,原不等式可化为+1a,设=tan,(0,)。tan+1a,即tan+1asecasin+cos=sin(+),又sin(+)的最大值为1(此时=)。由式可知a的最小值为。点评:此题考查不等式证明、求最值函数思想、以及学生逻辑分析能力。该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重
13、要不等式等求得最值。题型4:不等式证明的应用例7函数f(x)=x+ x,数列x(x0)的第一项x1,以后各项按如下方式取定:曲线x=f(x)在处的切线与经过0,0和x,f (x)两点的直线平行如图.求证:当n时,()x。证明:i因为所以曲线在处的切线斜率因为过和两点的直线斜率是所以.ii因为函数当时单调递增,而,所以,即因此又因为令那么因为所以因此故点评:此题主要考查函数的导数、数列、不等式等根底知识,以及不等式的证明,同时考查逻辑推理能力。例8a0,函数fxaxbx2。1当b0时,假设对任意xr都有fx1,证明a2;2当b1时,证明:对任意x0,1,|fx|1的充要条件是b1a2;3当0b1
14、时,讨论:对任意x0,1,|fx|1的充要条件。证明:依设,对任意xr,都有fx1,fx,1,a0,b0,a2证明:必要性:对任意x0,1,|fx|11fx,据此可以推出1f1,即ab1,ab1;对任意x0,1,|fx|1fx1,因为b1,可以推出f1,即a·11,a2;b1a2充分性:因为b1,ab1,对任意x0,1,可以推出:axbx2bxx2xx1,即axbx21;因为b1,a2,对任意x0,1,可以推出axbx22xbx21,即axbx21。1fx1。综上,当b1时,对任意x0,1,|fx|1的充要条件是b1a2解:因为a0,0b1时,对任意x0,1:fxaxbx2b1,即f
15、x1;fx1f11ab1,即ab1,ab1fxb1xbx21,即fx1。所以,当a0,0b1时,对任意x0,1,|fx|1的充要条件是ab122.解:原式xaxa20,x1a,x2a2。当a=a2时,a=0或a=1,x,当aa2时,a1或a0,axa2,当aa2时0a1,a2xa,当a0时axa2,当0a1时,a2xa,当a1时,axa2,当a=0或a=1时,x。点评:此题考查不等式的证明及分类讨论思想。题型5:课标创新题例9三个同学对问题“关于的不等式25|5|在1,12上恒成立,求实数的取值范围提出各自的解题思路。甲说:“只须不等式左边的最小值不小于右边的最大值;乙说:“把不等式变形为左边
16、含变量的函数,右边仅含常数,求函数的最值;丙说:“把不等式两边看成关于的函数,作出函数图像;参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围是。答案:a10。点评:该题通过设置情景,将不等式知识蕴含在一个对话情景里面,考查学生阅读能力、分析问题、解决问题的能力。例10在mm2个不同数的排列p1p2pn中,假设1ijm时pipj即前面某数大于后面某数,那么称pi与pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数。求a4、a5,并写出an的表达式;令,证明,n=1,2,。解由得,。因为,所以.又因为,所以
17、 =。综上,。点评:该题创意新,知识复合到位,能很好的反映当前的高考趋势。五思维总结1不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最根本的方法。1比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细表达:如果作差以后的式子可以整理为关于某一个变量的二次式,那么考虑用判别式法证;2综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野。2不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等。换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性。放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查。有些不等式,从正面证如果不易
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年华北理工大学轻工学院单招职业倾向性考试题库附答案详解(b卷)
- 2026年南京特殊教育师范学院单招职业技能考试题库附答案详解(综合卷)
- 2026年内蒙古伊克昭盟单招职业倾向性考试题库附答案详解(达标题)
- 2026年南昌理工学院单招职业技能考试题库及答案详解(真题汇编)
- 2026年兰州科技职业学院单招职业技能考试题库附参考答案详解(典型题)
- 2026年兰州石化职业技术大学单招职业技能考试题库带答案详解(综合卷)
- 2026年南昌影视传播职业学院单招职业技能考试题库及答案详解1套
- 2025年西北民族大学马克思主义基本原理概论期末考试模拟题附答案解析
- 2025年江西建设职业技术学院马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2026年兰州资源环境职业技术大学单招职业适应性考试题库带答案详解(综合题)
- 2026及未来5年中国抽纱刺绣工艺品行业竞争现状及投资前景趋势报告
- 2025动物防疫专员试题及答案
- 单元复习:解码中国-我国区域差异的深度整合与素养提升
- 心肺复苏术护理配合要点
- 中医特色护理在精神科的应用
- 风力发电运输合同范本
- 重难点22 立体几何中的外接球、内切球问题(举一反三专项训练)(全国通.用)(原卷版)-2026年高考数学一轮复习举一反三系列
- 高二生物DNA的复制一节教案(2025-2026学年)
- 法律合规风险评估检查表
- 福建省莆田市擢英中学2026届九年级英语第一学期期末联考试题含解析
- 小儿急性呼吸衰竭课件
评论
0/150
提交评论