高温镍氢电池关键技术_第1页
高温镍氢电池关键技术_第2页
高温镍氢电池关键技术_第3页
高温镍氢电池关键技术_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高温镍氢电池关键技术中心议题:高温镍氢电池关键技术镍氢电池负极材料的改良解决方案:正极材料机械混合法正极材料化学共沉淀法掺杂渗镀梯度复合球形氢氧化镍镍镉(Ni-Cd)电池由于含有剧毒元素镉,一直是环境保护工作者讨伐的电池对象之一。欧盟等组织不断出台政策和指令(报废电子电气设备指令WEEE与关于在电子电气设备中限制使用某些有害物质指令RoHS),更加速了镍镉电池被其他电池替代的进程。镍氢(Ni-HM)电池是最有希望替代,如何解决中心议题:高温镍氢电池关键技术镍氢电池负极材料的改良解决方案:正极材料机械混合法正极材料化学共沉淀法掺杂渗镀梯度复合球形氢氧化镍镍镉(Ni-Cd)电池由于含有剧毒元素镉,

2、一直是环境保护工作者讨伐的电池对象之一。欧盟等组织不断出台政策和指令(报废电子电气设备指令WEEE与关于在电子电气设备中限制使用某些有害物质指令RoHS),更加速了镍镉电池被其他电池替代的进程。镍氢(Ni-HM)电池是最有希望替代,如何解决镍氢电池在高温环境出现的性能问题,是其能否在更大领域应用的关键。镍氢电池在充放电过程、使用环境中,必然要牵涉到温度对电池性能和使用寿命的问题,军方急需的高容量移动电源、航空航天、航海、石油、煤炭、地质勘探及作业、冰上及登山体育项目用二次移动电源,具有很强的战略意义、科学价值及经济价值。另外,镍氢动力电池在燃料电池+镍氢电池(电电混合)及汽油+镍氢电池(油电混

3、合)等的混合动力车上也有重要应用价值前景。充电电池在充、放电过程,环境温度的变化等,对电池性能产生影响,虽然所有电池材料都对电池性能产生一定影响,然而,就高温电池来说,改善和优化正、负极材料是一种比较好的方法,除少量专利披露对贮氢合金进行改进,主要的技术还是在于正极材料,包括对电池正极材料配方时采用机械混合法添加稀土、稀有金属、碱土元素等,如Mg、Ca、Sr、Sc、Y、La、镧系元素、Ti、Zr、Cr、Mo、W、Mn、Fe、Co、Cu、Zn、Cd、B、Al、Ga、In、Si、P、As、Sb、Bi其中一种或多种氧化物、氢氧化物。由于正极配料时几种不同性质的物料很难达到完全均匀,所以考虑在制造球形

4、氢氧化镍时采用共沉淀掺杂上述元素,也有考虑在球镍上包覆一层上述元素的氢氧化物。尽管上述几种方法对于改善高温电池性能起到一定的作用,仍然存在不少欠缺和不足,解决电池性能降低的主要方法,一是改善球镍内部结构,防止产生-NiOOH,希望-NiOOH能与-Ni(OH)2充放电时转换容易(-NiOOH层间距为0.69nm,-Ni(OH)2晶层间距约为0.46nm,-NiOOH晶层间距约为0.48nm,-NiOOH的存在造成电极膨胀使活性材料损失,导电性降低,严重减少了电极的循环寿命和效率);另外方法就是添加导电材料提高导电性能,加入CoO或Co(OH)2。但是,作为原料粉末的氢氧化钴在充放电过程中,一边

5、溶解于碱性水溶液中,一边又再析出,并且发生急剧的结构变化,有部分钴化合物游离,造成钴量变化导致电池性能降低,虽然包覆球镍对于上述现象有了一定的改善,但是仍然存在包覆不够牢固、充放电后出现表面层溶解和脱落的现象。梯度功能材料(FunctionaryGradientMaterials,FGM)是一种显微组分、结构、性能阶梯变化的高性能材料。具有较高机械强度、抗热冲击、耐高温性能等特点。在电子部件、人造牙、汽车发动机、制动器、化工部件等有广泛的应用。作者认为将梯度材料的原理与球镍制造相结合将成为高温电池正极材料发展趋势。高温镍氢电池关键技术1、正极材料的改良1.1、正极材料机械混合法.1.2、正极材

6、料化学共沉淀法将上述元素在正极材料球形氢氧化镍生产过程,采用掺杂到层状结构氢氧化化镍中,取代部分镍离子,形成固溶体,使元素之间均匀性更好;在球形氢氧化镍外面包覆一层钴的氢氧化物等,对于提高电池整体性能,均有改善功能。具有代表性的专利见下表:.2、负极材料的改良镍氢电池负极材料采用贮氢合金,主要组成元素为M(NiCoMnAl)5,即AB5。M为稀土La、Ce、Pr、Nd。李蓉等人负极材料的成分组成(原子)为:AB5,组成高温镍氢电池用负极材料中的,A为La、Ce、Pr、Nd、Y元素;B为Ni、Co、Mn、Al元素;在涂铭旌院士带领下,之前四川大学材料学院的博士生导师陈云贵教授主持完成了无钕镍氢动

7、力电池的开发,其综合性能在国内外主要品牌电池的对抗试验中处于领先,获得了四项国家发明专利授权和2003年中国稀土十大科技新闻之一的荣誉。涂铭旌院士和陈云贵教授正在积极推广此性能优良的宽温区镍氢电池,展开飞机用低温大电流放电性能优良的镍氢启动电源和电动汽车用宽温区、长寿命及低成本镍氢电池的开发。3、掺杂渗镀梯度复合球形氢氧化镍球形氢氧化镍产业化有十余年的经历,掺杂Cd+Co和掺杂Zn+Co球镍商品化比较成熟,包钴(或称覆钴)在逐步走向商品化。以至于有人说“目前-Ni(OH)2的开发已接近极限;纳米Ni(OH)2及-Ni(OH)2材料的研究和开发前景将会十分广阔”。梯度功能材料(Functiona

8、llyGradientMaterials,简称FGM)是应现代航天航空工业等高技术领域的需要,为满足在极限环境(超高温、大温度落差)下能反复正常工作而发展起来的一种新型功能材料。是目前国际复合功能材料主要发展前沿技术领域。掺杂渗镀梯度复合球形氢氧化镍应分为两个概念:一、掺杂球形氢氧化镍,它是在传统的掺杂Cd+Co和掺杂Zn+Co球镍基础上,优化选择族元素、稀土元素等,制备出成分均匀、微观结构晶粒尺寸小、层间距大、半高宽较大的掺杂,比表面积和粒度分布符合要求,品质稳定的球形氢氧化镍。在该方面,作者认为自己开发的“体系微晶在线三元控制法”,在产品稳定性、均匀性;工艺再线控制简易程度、参数精密可靠度

9、;低廉设备投资和产品整体成本等方面处于国内领先地位。对松下电池公司批量供货一年时间、近千吨产品中,无一例品质投诉事件,开创国内同类产品之先河。二、梯度复合球形氢氧化镍,它与目前包钴球镍有相似之处,但又有很大的区别。包钴球镍是简单地在球形氢氧化镍中沉积包覆一层单一的氢氧化钴;梯度复合球形氢氧化镍是将欲渗材料(钴、钇、钛、钙、镁或其他稀土元素)与被修材料(掺杂球镍)均放在严密控制条件的状态,渗镀离子与氢氧根在添加剂的作用下聚集在基材(掺杂球镍)表面的离子不断沿着基材的晶体缺陷向基体内部快速扩散。最后形成欲渗金属元素在基体表面富集结晶,并渗入到基体内一定深度,由表及里,欲渗元素浓度呈梯度递减,其组织

10、结构也呈梯度变化,形成基材外表面具有欲渗金属的性能,基材心部仍保持原来的性能,中间层性能逐渐过度的梯度功能材料。组分连续变化的梯度材料的致密化使渗镀材料与基体结合牢固,制造成电池材料反应过程中渗镀材料与基体不容易脱落,保证了电池循环性能寿命一致性,通过加入选择族元素、稀土元素等,制备出掺杂渗镀梯度复合球形氢氧化镍从而获得高温镍氢电池的效果。在镍氢电池正极配料中添加稀土、稀有、碱土元素或氧化物,能改善镍氢电池在高温状态性能,其中具有代表性的元素为:如Mg、Ca、Sr、Sc、Y、La、镧系元素、Ti、Zr、Cr、Mo、W、Mn、Fe、Co、Cu、Zn、Cd、B、Al、Ga、In、Si、P、As、Sb、Bi其中一种或多种氧化物、氢氧化物。其中锆在新能源材料

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论