版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、高阶导数的运算法则二、高阶导数的运算法则第三节一、高阶导数的概念一、高阶导数的概念高阶导数一、高阶导数的概念一、高阶导数的概念)(tss 速度即sv加速度,ddtsv tvadd)dd(ddtst即)( sa引例引例:变速直线运动定义定义.若函数)(xfy 的导数)(xfy可导,或,dd22xy即)( yy或)dd(dddd22xyxxy类似地 , 二阶导数的导数称为三阶导数 ,1n阶导数的导数称为 n 阶导数 ,y ,)4(y)(,ny或,dd33xy,dd44xynnxydd,)(xf的二阶导数二阶导数 , 记作y )(xf 的导数为依次类推 ,分别记作则称设,2210nnxaxaxa
2、ay求.)(ny解解:1ayxa221nnxan 212ayxa3232) 1(nnxann依次类推 ,nnany!)(233xa例例1.思考思考: 设, )(为任意常数xy ?)(nynnxnx) 1()2)(1()()(问可得nx)1 ( ,3xaeay 例例2. 设求解解:特别有:解解:! ) 1( n规定 0 ! = 1,xaey .)(ny,xaeay ,2xaeay xanneay)(xnxee)()(例例3. 设, )1(lnxy求.)(ny,11xy,)1 (12xy ,)1 (21) 1(32xy )(ny1) 1(n,例例4. 设,sin xy 求.)(ny解解: xyco
3、s)sin(2x)cos(2 xy)sin(22x)2sin(2x)2cos(2 xy)3sin(2x一般地 ,xxnsin()(sin)(类似可证:xxncos()(cos)()2n)2n例例5 . 设bxeyxasin解解:bxaeyxasin)cossin(xbbxbaexa求为常数 , ),(ba.)(nybxbexacos)cossin(222222xbbabxbbaabacossinxae)sin(22bxba)arctan(ab22bay )sin(bxaexa222)()(nnbayxaeba22)arctan(ab)2sin(22bxba)sin(nbxexa)cos(bxb
4、exa二、高阶导数的运算法则二、高阶导数的运算法则都有 n 阶导数 , 则)()(. 1nvu )()(nnvu)()(. 2nuC)(nuC(C为常数)()(. 3nvuvun)(!2) 1( nn!) 1() 1(kknnn vun)2()()(kknvu)(nvu莱布尼兹莱布尼兹(Leibniz) 公式公式)(xuu 及)(xvv 设函数vunn) 1(vu 3)(vuvuvu)( vu)(vuvuvuvu 2vu )( vuvu vu 3vu 用数学归纳法可证莱布尼兹公式莱布尼兹公式成立 .例例6. ,22xexy 求.)20(y解解: 设,22xveux则xkkeu2)(2,2xv
5、,2 v0)(kv代入莱布尼兹公式 , 得)20(yxe22022xxe219220 x2!219202xe2202)9520(2xxxe2182)20,2,1(k)20,3(k0!2) 1() 1(nynn)(nyn例例7. 设,arctanxy 求).0()(ny解解:,112xy即1)1 (2yx用莱布尼兹公式求 n 阶导数)1 (2xx22令,0 x得)0() 1()0() 1() 1(nnynny),2, 1(n由,0)0(y得,0)0( y,0)0()4(y,)0() 12( my)0() 12(2) 12(mymm)0(! )2() 1(ymm0)0()2(my ) 1(ny12
6、, ! )2() 1(2,0)0()(mnmmnymn即), 2, 1 , 0(m由, 1)0( y得)0(! )2() 1()0() 12(ymymm内容小结内容小结(1) 逐阶求导法(2) 利用归纳法(3) 间接法 利用已知的高阶导数公式(4) 利用莱布尼兹公式高阶导数的求法)(1nxa1)(!) 1(nnxan)(1nxa1)(!nxan如,思考与练习思考与练习xy1211)()1 (!) 1(2nnnxnyxxxy11123,)1 (!1)(nxnynn1. 如何求下列函数的 n 阶导数?xxy11) 1 (xxy1)2(3解解: 解解: 2312xxy1121xxy11)() 1(1)2(1!) 1(nnnnxxny(3)12) 1)(2(1xBxAxx提示提示: 令)2(xA原式2x) 1(xB原式1x11 作业作业P103 1 (9) , (12) ; 10 (2)解解: 设)(sin2xfxy 求,y其中 f 二阶可导. y yxxfxcos)(sin2)(sin2xf备用题备用题x2(sin )fx2x)(sin xf xcos)cos)(sin(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年轻工业生产质量管理手册
- 企业职业健康安全管理员手册(标准版)
- 传染病消毒隔离管理制度
- DB61T 2094.6-2025天麻生产技术规范 第6部分:商品天麻
- 超市商品销售及营销策略制度
- 采购团队培训与发展制度
- 办公室员工保密承诺制度
- 2026年石狮市鸿山镇第二中心幼儿园招聘备考题库带答案详解
- 2026年未央区汉城社区卫生服务中心招聘备考题库及1套参考答案详解
- 养老院安全管理与应急制度
- 2024-2025学年广东省深圳市福田区六年级(上)期末数学试卷
- 道岔滚轮作用原理讲解信号设备检修作业课件
- 小学师徒结对师傅工作总结
- 2024-2025学年山东省临沂市高二上学期期末学科素养水平监测数学试卷(含答案)
- 金融行业风险控制与投资策略研究
- 卧式椭圆封头储罐液位体积对照表
- BCG-并购后整合培训材料-201410
- 招标代理机构入围 投标方案(技术方案)
- 运输车队年终总结报告
- 房屋损坏纠纷鉴定报告
- 精益生产方式-LEAN-PRODUCTION
评论
0/150
提交评论