




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学辅导要点 ( 一 ) 、函数、极限、连续、1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数(复合过程、复合最终结果)和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系(证明极限不存在两个子数列趋向不同!)。 7. 理解极限存在的夹逼准则(证明和式极限一方法),了解实数域的完备性 ( 确界原理、单界有界数列必有极限的原理,柯西 (Cauchy) ,审敛原理、区间套定理、致密性定理 ) 。会用
2、两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限(代换规则)。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10. 了解初等函数的连续性和闭区间上连续函数的性质 ( 介值定理,最大最小值定理 (零点定理与罗尔定理判断方程根的不同) 。 ( 二 ) 、一元函数微分学 1. 理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2. 掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性 。 3.
3、 了解高阶导数的概念。 4. 掌握初等函数一阶、二阶导数的求法。 5. 会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6. 理解罗尔 (Rolle) 定理和拉格朗日 (Lagrange) 定理,了解柯西 (Cauchy) 定理和泰勒 (Taylor) 定理。 7. 会用洛必达 (LHospital) 法则求不定式的极限。三个及时:及时用等价无穷小代换!及时剥离极限非零因子!及时整理! 8. 理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9. 会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形 ( 包括水平和铅
4、直渐进线 ) 。 ( 三 ) 、一元函数积分学 1. 理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2. 理解定积分的概念及性质,了解函数可积的充分必要条件。 3. 理解变上限的积分作为其上限的函数及其求导,掌握牛顿 (Newton) 莱布尼兹 (Leibniz) 公式。 4. 掌握定积分的换元法和分步积分法。三问题1.定积分换元先换限;2.对称区间奇偶函数积分;3.定积分变量代换等式证明。两公式: 5. 了解广义积分的概念及广义积分的换元法和分步积分法。 6. 了解 函数及其主要性质。 7. 掌握用定积分表达一些几何
5、量与物理量 ( 如面积、体积、弧长、功、引力等 ) 的方法。 ( 四 ) 、常微分方程 1. 了解微分方程、解、阶、通解、初始条件和特解等概念(通解=全部解?不!)。 2. 掌握变量可分离的方程、齐次方程、两个可化为!及一阶线性方程的解法。会解齐次方程和伯努利 (Bernoulli) 方程,了解用变量代换求解方程的思想。 3. 会解全微分方程,能观察出最简单的积分因子。 4. 会用降阶法解下列方程: y(n)=f(x), y=f(x,y)(无y)和y=f(y,y)(无x).同时有x、y?换元!同时无x、y?都可!但是.5. 理解线性微分方程解的结构,了解常数变易法。 6. 掌握常系数齐次线性方
6、程的解法,会求自由项形如 和 的常系数非齐次线性方程的特解。 7. 了解幂级数、傅立叶级数解法及勒让德 (Legendre) 函数。 8. 会用微分方程解一些简单的几何问题和物理问题。 (五 ) 、空间解析几何与向量代数 1. 理解空间直角坐标系。 2. 理解向量的概念及其表示,掌握向量的运算 ( 线性运算、数量积、向量积、混合积 ) ,掌握两个向量垂直、平行的条件。 3. 掌握单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。 4. 掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题。平面方程一般式(缺项时特点)、点法式(求平面方程的主要方法主要
7、工作求法向量)。直线方程一般式、点向式、参数式(之间的相互转化) 5. 理解曲面方程的概念,了解常用二次曲面的方程及其图形,重点-以坐标轴为旋转轴的旋转曲面(空间曲线绕z坐标轴旋转-两要素-到坐标轴距离、竖坐标不变)及母线平行于坐标轴的柱面方程。 6. 了解空间曲线的参数方程和一般方程。(相互转化-寻找平方和、确定xyz之一为参数) 7. 了解曲面的交线在坐标平面上的投影(有轴平面束)。 ( 六 ) 、多元函数微分学 1. 理解多元函数的概念。 2. 了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。(二元函数极限的求法(无限多种逼近方式)迫敛、一元函数极限的求法洛必达法则不能
8、用!证明不存在!-) 3. 理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,了解一阶全微分形式的不变性。(全微分的定义!可微的必要条件!(偏导数存在、连续)充分条件(偏导数连续)!充要条件!) 重点题型二元分段函数在分断点处的极限、连续性、偏导数、可微、二阶偏导数!4. 了解方向导数与梯度的概念及其计算方法(可微、偏导数存在方向导数存在之间的关系?)。 5. 掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。(抽象复合函数的偏导数!表示方法、符号、技巧!) 6. 会求隐函数 ( 包括由两个方程组成的方程组确定的隐函数 ) 的偏导数。(确定函数条件?偏连、非空、非零) (一个
9、2、3元方程确定一个1、2元函数、两个三元方程确定两个一元函数、两个四元方程确定两个二元函数)7. 了解曲线的切线和法平面及曲面的切平面与法线,并会求它们的方程。 8. 理解多元函数极值与条件极值的概念,会求多元函数的极值。了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。 ( 七 ) 、多元函数积分学 1. 理解二重积分(补充对称性!)、三重积分的概念及性质。 2. 掌握二重积分的计算方法 ( 对称性图形关于x轴对称 函数?、直角坐标x型y型图形特点?极坐标圆环扇形积分区域 、换元法-换积分区域!) ,了解三重积分的计算方法 ( 对称性!直角坐标、柱面坐标、球面坐标
10、 ) (思路:分析积分区域1.对称性.2.分析被积函数与积分区域是否用柱面坐标、球面坐标.3.被积函数只是关于z的一元函数?截面积易求?-截面法!4.投影法)-用形心坐标计算一次被积函数的二、三重积分!。了解重积分的换元法。 3. 理解两类曲线积分的概念、性质及相互间关系,掌握两类曲线积分的计算方法。(第一类曲线积分计算思路-1.对称性:平面曲线关于坐标轴对称、空间曲线关于坐标平面对称;2.换元:平面曲线直角坐标参数方程极坐标三种方程下的弧微分公式、空间曲线参数方程 一般式-化为参数式?其它技巧?) (第二类曲线积分:注意积分弧段的方向!根据所给曲线段的方程,代入!)(二者关系-!ds dx
11、dy)4. 掌握格林 (Green) 公式(-平面曲线段上的第二类曲线积分!两条件!-区域D由分段光滑的闭合曲线围成-不满足-如何?-补充!;P、Q在区域D内一阶偏导数连续不满足补充! 求曲线积分什么情况下用格林公式? 常数!)及平面曲线积分与路径无关的条件(全微分方程求积方法!)。 5. 理解两类曲面积分的概念、性质及相互间的关系,会计算两类曲面积分(第一类曲面积分计算对称性-曲面关于xoy坐标平面对称、被积函数关于z为奇函数!;三换积分曲面换投影、换函数、换DS!)。 6. 掌握高斯公式(两条件!-区域由分片光滑的闭合曲面(外侧!)围成-不满足-如何?-补充!;P、Q、R在区域内一阶偏导数
12、连续不满足补充! 求曲面积分什么情况下用高斯公式? 常数!-最难题两个条件都不满足!),了解曲面积分与曲面形状无关的条件。 7. 了解斯托克斯 (Stokes) 公式。(-空间曲线段上的第二类曲线积分!两个条件!公式的两个形式!-重在第二种等于第一类曲面积分!转化为求积分曲面的面积!环流量、旋度!) 8. 了解数量场、向量场及向量微分算子 的概念,了解散度、旋度的概念及其计算公式,了解无源场、无旋场及调和场的概念。 9. 会用重积分和曲线积分以及曲面积分求一些几何量与物理量 ( 如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功、通量等 ) 。 ( 八 ) 、无穷级数 1. 理解无穷级数收
13、敛、发散以及和函数的概念,熟悉无穷级数基本性质(线性性质、加上、改变去掉有限多项、加括号等)及收敛的必要条件。 2. 掌握几何级数和 p- 级数的收敛性。 3. 了解正项级数的比较审敛法和极限审敛法,掌握正项级数的比值审敛法。(正项级数敛散性判断:1.一般项趋向于0?2.比值、根植=1?3.比较审敛、定义!) 4. 了解交错级数的莱布尼兹定理,会估计交错级数的截断误差。 5. 了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。了解绝对收敛级数的一些基本性质。 (任意项级数-绝对收敛!)6. 理解函数项级数的收敛域及和函数的概念。 7. 掌握比较简单的幂级数收敛域的求法(收敛半径二公
14、式:比值、根植分别情况用?标准形式?缺项?)8. 了解幂级数在其收敛区间内的基本性质。 9. 了解函数展开为泰勒级数的充分必要条件(余项趋向于零!)(直接展开!间接展开!)10. 会利用 ex,sinx,cosx,ln(1+x) 和 (1+x)u 的马克劳林 (Maclaurin) 展开式将一些简单的函数间接展开成幂级数。 11. 了解幂级数在近似计算上的简单应用。 12. 了解函数展开为傅里叶 (Fourier) 级数的狄利克雷 (Dirichlet) 条件,会将定义在 和 (-L,L) 上的函数展开为傅里叶级数,并会将定义在 (0,L) 上的函数展开为正弦或余弦级数。 (求系数!狄利克雷
15、(Dirichlet) 条件!)上册复习问题1、 两个函数在什么条件下可以复合为一个函数?2、 分段函数一定不是初等函数吗?3、 隐函数、参数方程确定函数的二阶导数会求吗?4、 夹逼定理适用于什么问题的证明?单调有界定理呢?5、 未定式极限的七种类型是什么?求的方法呢?用洛必达法则求极限要注意什么(三个及时?)?八个等价无穷小记得吗?6、 怎么判断间断点(大致的步骤是?)?7、 零点定理怎么用?判断什么?8、 导数定义的两种极限形式记得吗?几何意义呢?基本公式没问题吧?9、 罗尔定理怎么用?跟零点定理的区别是?10、 拉格朗日中值定理主要用于什么?怎么证明不等式?11、 高阶导数的莱布尼兹公式能用吧?常见函数的展开式还能写出来吗?12、 三种渐近线四个极限知道吗?13、 单调极值凹凸拐点的判断不是问题吧?14、 曲率的计算公式能写出来吗?15、 不定积分与微分之间的关系不会不知道吧?16、 凑微分大致的类型能写出几种?17、 换元积分的核心是去掉什么?平时经常用几种换法?什么情况下用?18、 分部积分按照什么顺序确定U、dv?19、 记住分子是分母的导数或者凑分子为分母的导数的情况!20、 定积分定义中平分区间时的极限形式是?为什么要记住这种形式?21、 变上限函数求导的公式记得吗?跟微分方程了解起来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院财务管理与银行服务的整合
- 区块链未来科技的核心驱动力
- 公司前台接待工作总结模版
- 浅昏迷的临床护理
- 先天性脑积水的临床护理
- 医疗安全教育在血透室中的实施策略
- 代发维修票合同范例
- 临沂电动车买卖合同范例
- 个人承诺协议合同范例
- 医务人员的伦理素养与法律意识
- 《光纤激光切割技术》课件
- 2024年山西杏花村汾酒集团有限责任公司招聘笔试真题
- 2025衡水市武强县辅警考试试卷真题
- 《行政法与行政诉讼法》课件各章节内容-第一章 行政法概述
- 山西省太原市2025年高三年级模拟考试(二)语文试题及答案
- 2025年广东广州中物储国际货运代理有限公司招聘笔试参考题库含答案解析
- 湖北省武汉市2025届高中毕业生二月调研考试数学试题及答案
- 2025年高三语作文模拟题分析+材料+范文:关心人本身应成为一切技术上奋斗的主要目标
- 2025中考二轮专题复习:古诗文主题默写汇编(2)(含答案)
- 海外安保面试题及答案
- 长城汽车2025人才测评答案
评论
0/150
提交评论