版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、加减平衡力系公理不但适用于刚体,还适用于变形体.X2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态.X3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在.,4、但凡受两个力作用的刚体都是二力构件.X 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果.X 6、假设作用于刚体上的三个力组成平衡力系,那么此三力一定共面,但不一定交于一点.,7、如果所作的受力图是一个显然不平衡的力系,那么受力图一定有错.X 8、如果作用在一个刚体上的力系对任何点主矩均不为零,该力系可以等效为一个力偶.X 9、作用在一个刚体上的任意两个力平衡的必要与充分条件是:两个力的作用线相同,
2、大小相等,方向的反.10、由于构成力偶的两个力满足 F= -F',所以力偶的合力等于零.X 11、用解析法求平面汇交力系的合力时,假设选用不同的直角坐标系,那么所求得的合力不同.X12、力偶永远不能与一个力等效,共面的一个力与一个力偶总可以合成为一个力. V 13、力偶的作用效应用力偶矩来度量.,14、力对于一点的矩不因力沿其作用线移动而改变.,15、只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应., 16、当力与轴共面时,力对该轴之矩等于零,17、在保持力偶矩不变的情况下,可任意改变力和力偶臂的大小,并可以在作用面内任意搬移,18、在任意力系中,假
3、设其力多边形自行封闭,那么该任意力系的主矢为零., 19、当平面一般力系向某点简化为力偶时,如果向另一点简化,那么其结果是一样的.X20、首尾相接构成一封闭力多边形的平面力系是平衡力系.X21、假设一平面力系对某点之主矩为零,且主矢亦为零,那么该力系为一平衡力系.,22、如果某平面力系由多个力偶和一个力组成,那么该力系一定不是平衡力系,23、任一力系如果向A、B两点简化的主矩均等于零,那么力系的主矢向与AB连线垂直的轴的投影一定为零,24、力系的主矢与简化中央的位置有关,而力系的主矩与简化中央的位置无关,25、在空间问题中,力对轴之矩是代数量,而力对点之矩是矢量.,26、物体的重心可能不在物体
4、之内., 27、力沿坐标轴分解就是力向坐标轴投影.X 28、当力与轴共面时,力对该轴之矩等于零.,29、在空间问题中,力偶对刚体的作用完全由力偶矩矢决定.X 30、将一空间力系向某点简化,假设所得的主矢和主矩正交,那么此力系简化的最后结果为一合力X 31、在两个相互作用的粗糙外表之间,只要作用的法向反力不为零,两者之间就一定相互作用有摩擦力,且F=fN X32、正压力一定等于物体的重力X33、只要两物体接触面之间不光滑,并有正压力作用,那么接触面处的摩擦力的值一定等于F =Nf X34、只要接触面的全反力与法向反力的夹角不超过摩擦角,那么物体与接触面之间就不会发生相对滑动X35、在有摩擦的情况
5、下,全约束力与法向约束力之间的夹角称为摩擦角.X36、点作曲线运动时,其加速度的大小等于速度的大小对时间的导数.X37、只要点做曲线运动,那么其加速度就一定不等于零X38、点做匀速运动时,不管其轨迹如何,点的加速度恒等于零X39、用自然法求点的速度、加速度时,需点的轨迹和点沿轨迹的运动规律,40、点做直线运动时,法向加速度等于零,41、在自然坐标系中,如果速度 v =常数,那么加速度 a = 0.X(X)42、作曲线运动的动点在某瞬时的法向加速度为零,那么运动其轨迹在该点的曲率必为零.43、假设丫与2垂直,那么v必为常量,44、假设V与a平行,那么点的轨迹必为直线,f45、点的V<0,
6、ak0那么点作减速运动 X46、当刚体绕定轴转动时,如 co <0 , s<0,那么刚体愈转愈快 ,47、刚体做平动时,其上各点的轨迹均为直线X48、刚体绕定轴转动时,其上各点的轨迹一定是圆X49、刚体作定轴转动时,其转动轴一定在刚体内.X50、列车沿直线轨道行驶时,车厢和车轮的运动都是平动.X51、刚体作平动时,刚体上各点的轨迹均为直线.X52、刚体作平动时,其上各点的轨迹可以是直线,可以是平面曲线,也可以是空间曲线.,53、两个作定轴转动的刚体,假设其角加速度始终相等,那么其转动方程相同.,54、刚体平动时,假设刚体上任一点的运动,那么其它各点的运动随之确定.,55、在同一瞬时
7、,定轴转动刚体内所有各点的全加速度与该点发法向加速度的夹角均相等,56、动点做合成运动时,它的牵连速度就是动参考系的速度X57、点的合成运动仅指点同时相对两个物体的运动.X58、在复合运动问题中,点的相对加速度是其相对速度对时间的相对导数.,59、动点的速度合成与牵连运动的性质无关,而动点的加速度合成那么与牵连运动的性质有关,60、动点速度的方向总是与其运动的方向一致.,61、牵连运动是指动系上在该瞬时与动点重合的点相对于动系的运动.X62、在复合运动问题中,相对加速度是相对速度对时间的绝对导数.X63、纯滚动时接触点的滑动摩擦力不做功.,64、在平面运动的刚体上可以找出无数根作平动的直线,6
8、5、瞬心如不在做平面运动的刚体上,那么该刚体无瞬心X66、刚体运动时,假设体内任一直线均保持与其最初位置平行,那么此刚体做平面运动X67、刚体作平面运动时,平面图形内两点的速度在任意轴上的投影相等.X68、刚体作平面运动时,如果刚体的瞬时角速度不等于零,那么刚体的瞬时速度中央一定存在.,69、假设作用于质点上的合力的大小与方向均不随时间改变,那么质点的运动轨迹一定为直线X70、质点的速度越大,所受的力也越大X 71、质点在常力作用下,一定做匀加速度直线运动X72、质点的质量和作用于质点的力,质点的运动规律就完全确定.X73、两自由质点,仅其运动微分方程相同,还不能肯定其运动规律相同.,74、一
9、个质点的速度越大,该瞬时它所受到的作用力越大X.75、质点系的内力不能改变质点系的动量.,76、质点系的动量等于零,那么质点系每个质点的动量依然必等于零X77、如果质点系所受的力对某点或轴的矩恒保持不变,这就是质点系的动量矩守恒定律X78、质点系中各质点都处于静止时,质点系的动量为零.于是可知如果质点系的动量为零,那么质点系中各质点便都静止.79、设JA和JB分别是细长杆对通过 A、B两端点的一对平行轴的转动惯量,那么: JB=JA+md2 X8R如果作用于质点系上的外力对某固定点的主矩不为零,那么质点系对过该点的任何轴的动量矩一定仍守恒.81、质点系的内力不能改变质点系的动量与动量矩,82、
10、质点的速度方向就是质点的动能方向X(X)83、由于质点系的内力成对出现,所以内力作功之和恒等于零1、在下述公理、法那么、原理中,只适于刚体的有加减平衡力系公理力的可传性原理2、加减平衡力系公理适用于 B刚体3、图中所示的某汇交力中各力系之间的关系是C Fl + F2=F3+F42、如下列图的平面汇交力系的力多边形表示:A力系的合力等于 03、力F在成120°角的Ox、Oy轴上的投影为 1F ,而沿着Ox Oy轴上的分力的大小为 C F21、等边三角板 ABC,边长为b,今沿其边缘作用三个大小均为F的力,方向如下列图.问这三个力向点A简化的主矢量'和主矩此1的大小等于多少 B
11、稣'=.,肛=用阳22、如下列图轮子,在 O点由轴承支座约束,受力和力偶的作用而平衡,以下说法正确的选项是 B力P和轴承O的支座反力组成的力偶与轮子上的力偶相平衡3、刚体某平面内点 .处作用一个力F ,同时在该平面内还作用一个力偶矩为 旭的力偶,如下列图.假设将此力与力偶简化,其最后的结果是:B简化为一个合力作用线不通过点.1、刚体在五个空间力的作用下处于平衡,假设其中有四个作用线汇交于一点, 那么第五个力的作用线 A 一定通过该汇交点2、空间汇交力系的独立平衡方程数目为C 33、空间力偶矩是D 自由矢量.4、正立方体的顶角上作用着六个大小相等的力,此力系向任一点简化的结果是A 主矢等
12、于零,主矩不等于串酒尸 ¥ 1s I5、点月的坐标为5,5,5,如下列图,力尸在y轴上的投影为:C+也口+16空间力系向三个两两正交的坐标平面投影,得到三个平面一般力系,那么其独立的平衡方程数目为B1、物块A重W,它与铅垂面白摩擦角为 20°,今在物块 A上力F, 且F=W,力F与水平线的夹角为 60°,如下列图.A所处的状态为:C稳定平衡状态2、库仑定律Fmax = f N适用于C 临界平衡状态3、如下列图假设尖劈两侧与槽之间的摩擦角均为外,那么欲使尖劈被打入后不致自动滑出,0角应为多大 C 8三2%4、物块重50N,在水平向左的推力作用下,靠在铅直墙面上,假设
13、如下列图两种情况下,物块与墙面之间的静摩擦因数都是0.3 ,试问物块是否处于静止状态 C 1运动,2静止1、动点沿半径 R=5cm的圆周运动,其运动方程为s=2t 其中s以cm计,t以s计,那么动点加速度的大小为C 4/5 cm/s 22、动点的速度和切向加速度分别为aT <0 ,v>0,由此可知C 点做减速运动3、点在运动过程中,恒有 a广常量,an #0,点做何种运动 B 点做匀变速曲线运动4、设方程s= ftffir =xti +ytj表示同一个点的运动,以下四个等式中正确的选项是A/=史dv5、在以下四种说法中,正确的选项是 C 当 J与v同号时,动点做加速运动1、点作圆周
14、运动,如果知道其法向加速度越来越小,那么点的运动速度:A 越来越小2、汽车左转弯时,车身作定轴转动,汽车右前灯月的速度大小为 吃I,汽车左前灯的速度大小为 匕,且、B之间的距离为b,那么汽车定轴转动的角速度大小为B 心-也伤1、水平管以角速度3绕铅垂轴转动,管内有一小球以速度v=rco沿管运动,r为小球到转轴的距离,球的绝对速度是C 22 r«2、在点的合成运动问题中,当牵连运动为定轴转动时B .不一定会有科氏加速度;3、在点的复合运动中,牵连速度是指C 动系上与动点瞬时相重合的那一点的速度1、如下列图的曲柄连杆机构中,曲柄长OA=r,角速度为咻,连杆长RB=2r,那么在图示位置时,
15、连杆的角速度 阻值为:C 阻g=为/22、今给出如下列图的平面图形上 A. 8两点的速度,虱=七1且两者方向平行,试问下面答案中哪一种是正确的 B 2的运动是可能的1、质点做匀速圆周运动,其动量有无变化C 动量大小无变化,但方向要变化2、正方形刚体 月8"上点2的速度为=2点汕;,点R的速度叫二2鸣,方向如下列图.刚体力BCD的质量为喀=2kg,边长为良,对质心的转动惯量为"口 = W,w:那么此刚体此7? = -I-= 2a/2 十 13 m/s瞬时的动量尸为D22方向为%+吗的方向1、长为1、质量为ml的均质杆OA的上端上焊接一个半径为 r、质量为m2的均质圆盘,该组合
16、物体绕 O点转-m 2r 2 - ( 1 - r ) 2 m 2 L 2m 二,动的角加速度为3,那么对O点的动量矩为D 32、体重相同的两人,同时沿均质定滑轮两侧的绳索由静止开始爬绳,绳子与人之间以及与滑轮之间都无相对滑L0守恒,T、K不守恒动,不计轴的摩擦,设整个系统的动能为T,动量为K,对轴的动量矩为 L0,那么C 3、如下列图,均质杆 月3的力端和固定支座较接,B端悬挂在铅垂绳子上,并使杆保持 水平,假设突然将绳子剪断,问此时月端的约束反力的大小和原来相比方何 B 变小和二,且各为均质,4、如下列图长27的细直杆由钢和木两段组成,各段的质量各为二一那么+问它们对e轴的转动惯量 心等于多
17、少 D '35、如下列图,均质正方体ABCD,质量为 那么刚体对转动轴力的动量据大小之为演,边长为瓦冲厨二: la -尚占* A 3口的转动惯量,0 = mb20 6点c的速度a.6、如下列图,均质圆盘.的质量是次幼试写出圆盘的转动微分方程:D 2里物力的质量是卿九绳子重力不计, r © =叫 gr7、圆轮重印,放在光滑的水平面上,处于静止状态,假设在圆轮上作用一力偶如下列图,问圆轮的质心将如何运动?C 质心C不动8、边长为L的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图示,假设给平板一微小扰动,使其从图示位置开始倾倒,平板在倾倒过程中,其质心C点的运动轨迹是D 铅
18、垂直线.1、示,圆轮在力偶矩为 血的力偶作用下沿直线轨道作只滚不滑运动,接触处摩擦因数为 ,圆轮重 即,半径为广,当圆轮顺时针转过一圈,外力作功之和为?2、如下列图,均质圆盘的质量为 海,半径为广,可绕点.在铅直面内转动,转动角速度为小,nJ 2试写出圆盘的动能:C 骂t=3加G /4轮心仃沿斜面移动距离$时,3、如下列图圆轮沿斜面直线轨道向下作只滚不滑运动,当 轮缘上摩擦力F所做的功碑n为C.°1、力对物体的作用效应一般分为 外效应和内效应.2、做物体的受力图时,应根据 约束的类型来分析约束反力.内力在受力图上不应画出3、对非自由体的运动所预加的限制条件成为约束;约束反力的方向总是
19、与约束所能阻止的物体的运动趋势的方向相反;约束反力由主动力力引起,且随其改变而改变1、平面内两个力偶只有在它们的 力偶矩大小相等、转向相同 的条件下,才能对同一刚体产生 相同的作用效2、力偶不能与一个力等效,也不能被一个力平衡.3、平面汇交力系平衡的几何条件是 形自行封闭4、力在直角坐标轴上投影的大小与力沿这两个轴分力的大小相等;而力在互不垂直的两个坐标轴上投影的大小与力沿这两个轴分力的大小不等.5、力偶由大小相等、方向相反、作用线平行的两个力组成.1、作用在刚体上点A的力F,可以等效地平移到该刚体上任意点 B,但必须附加一个力偶 2、平面任意力系向O点简化的主矢等于合力的大小及方向主矢与简化
20、中央的位置的选择无3、平面固定端的约束反力作用是用Fx,Fy1MA 表示的1、空间力F在Ox轴上的投影为零,对 Ox轴的力矩也为零,那么该力与 Ox轴垂直且相交2、力对轴之矩等于力对轴上一点的力矩矢在该轴上的投影 3、力对任意点O的矩矢在通过该点的任意轴上的 投影等于力对该轴的矩4、均质物体的重心只取决于物体的几何形状而与物体的 重量无关5、空间力系有6个独立的平衡方程,1、摩擦角是接触面对物体的全反力与法向反力之间的夹角在临界状态状态下的值,其正切等于静摩擦系数2、摩擦角小m是最大静摩擦力和法向反力的合力与支承面法线间的夹角,且小m = arctanf 03、当作用在物体上的主动力合力作用线
21、与接触面法线间的夹角a小于摩擦角时,不管该合 力大小如何,物体总处于平衡状态,这种现象称为摩擦自锁.1、设动点A和B在同一直角坐标系中白运动方程分别为 xA=t,yA=2t2 ,xB=t2 ,yB=2t2 ,那么两点相遇 的时刻t= 1 s,相遇时A点的速度vA= "17m/s1、转动刚体内任一点的速度的代数值等于 角速度与具到转轴的距离的乘积2、四连杆机构中AB = CD =r,其角速度为,如下列图,杆BC上M点的速度大小为3、图示机构,杆AB、CD分别绕A点和D点转动,角速度为,且知AB=CD=R,那么三角形任 意处的M点速度大小是R® 4、点沿轨迹的运动方程s=bt-
22、sint,其中b为常数,弧坐标s的单位为m,当点的速度v=0.5bm/s 时所在处曲率半径*=0.5bm,点的力口速度大小是bm/s2 5、定轴转动刚体内任一点的速度和切向加速度的方位与点的轨迹相切,而任一点的法向加速度的方向那么始终指向转轴1、动点相对定系的运动称为动点的绝对运动2、牵连运动为平动时点的加速度合成定理表达式为或=或十或3、在每一瞬时,动点的绝对速度等于它的牵连速度与相对速度的 矢量和1、平面图形上任意两点的速度在其连线上的投影相等.这一结论称为速度投影定理定理2、平面运动分解为跟随基点的平动与绕基点的转动时,其中平动与基点的选择有关,而转动与基点的选择无关3、平面图形做瞬时平
23、动时,各点的速度在此瞬时相等,各点的加速度在此瞬时不相等1、质量为mkg的质点在平面内沿半径R=9/8m的圆周运动规律为s=t3m.当t=1s时,作用在质 点上力的大小为10m牛顿2、图示质量为m的质点,以匀速率v做圆周运动.质点从A运动到B的过程中,作用在质点 M 上的冲量在x轴上的投影为-mv ,在y轴上的投影为- mv 3、质量为m质点在平面内的运动规律为 x=Rcost,y=Rsint,其中R为常量,那么当t=n时,作用于 质点上力的大小为mR 1、质量为m的质点,运动速度为v,那么其动量的大小为p= mv ,动量的方向为v的方向 2、设车厢上水平向右的牵引力F为常力,大小为F=10k
24、N,作用时间为AT=10s,那么在这段时间内, 力F的冲量S= 100000N s ,冲量S的方向为水平向右1、均质圆盘重P ,半径为r,绕偏心轴以角速度转动,轴O到圆心C的距离为e,那么圆盘对轴 O的动量矩为:Lo =.2、可视为均质圆盘的定滑轮 O质量为m,半径为Ro物体A的质量为2m,物体B的质量为m, 用不计质量的细绳连接,如下列图.当物体 A的速度为v时,系统对.轴动量矩的大小为 3、刚体绕定轴转动的运动微分方程为1、图示机构中,曲柄 OA的质量为m ,长为a ,角速度为 ,连杆AB的质量为2 m ,长 为L ,轮B质量为2 m ,半径为r ,在水平轨道上纯滚.各构件均质.那么图示瞬
25、时系统的动 量p =,系统的动能T =2、图示质量为m,长为l的均质杆较接于.点.在A端周接一质量为m的质点,当OA以角速度绕.轴转动时,系统的动能为3、作用在转动刚体上的常值转矩的功等于该转矩与转角的乘积.4、当物体的重心下降时,重力的功的符号为 正,而重心升高时重力的功的符号为 负2、由AC和CD构成的组合梁通过钱链 矩M=40kN仙,不计梁重.求支座 A、C连接.支承和受力如下列图.均布载荷强度q=10kN/m,力偶B、D的约束力和钱链C处所受的力.解:12_,-q 22 -MFrd 4=01F rd = (M42q) -15 kN 三 Fy=0 FrcFrd - q 2 - 0Frc=
26、2q Frd = 5 kN 取AC梁为研究对象A = 0 , Frb 2 一 Frc 4 - 2q 3 = 0Frb三Fy=0, Fra + Frb = Frc -q 2 = 0F RA1(4Frc 6q) = 40 kN2_ HFrc 2q Frb =-15 kN2m3、求图示多跨静定梁的支座反力.解:先以CM研究对象,受力如图.' Mc(F ) = 0:3FD-3q QFAy = 2 F - 2qFb =2F 3q Fd )2q再以整体为研究对象,受力如图.FCif f 小" Fx=0:Fax=0' Fy : 0: FAyFbFd - F - 4q = 0AD%
27、Ma(F) =0:8Fd 4FB -2F -4qF CyF 匚JF Fb =F 3qFAyF Ay4、组合结构如下列图,求支座反力和各杆的内力.解:先以整体为研究对象,受力如图." Fx =0: Fax Fd =0 " Fy=0: FAy-q(2ab) = 0'Ma(F)=0FDa -2q(2a b)2 = 0解之得q(2a b)2Fd= Fax2q(2a b)22aFAy再以较c为研究对象,受力如图,建立如图坐标Fx=0: F1 F3 cos45FiFdF3q(2a_b)2、2a2q(2a b)22aqA3DCayF D>1/bF A,二 q(2a b)0:
28、 F2 F3sin45 = 03L - Q 15、如下列图,水平梁由 AB和BC两局部组成,它所在 C处用钱链相连,梁的 A端固定在墙上,在 C处受滚动支座支持,长度单位为 m, .=30°试求A、B、C、处的约束反力.先取BC为研究对象,受力分析如图,列平衡方程' Fx = Fbx - Rc sin =0-Fy = FByRccosu - 6 20 = 0% M b(F) = Rccosu 6 - 20 63 = 0解得 Fbx =20 3KN Fby =60KN Rc =40 3KN再取整体研究,受力如图' Fx =Fax - Rc sin =0“ Fy =FAy
29、 Rc cos -6 20=0' M a(F) = M a Rccosi 9 -20 6 6 -40 =0加gMa解得 Fax =20.3KN Fay =60KN Ma= 220KN mAXATA2、图示凸轮推杆机构中,偏心圆凸轮的偏心距OC = e,半径,=&.假设凸轮以匀角速度 通绕轴O作逆时针转动,且推杆 AB的延长线通过轴 O,试求当OC与CA垂直时杆 AB的速度.解:以A为动点,偏心圆凸轮为动系,速度分析见图示:由速度合成公式,Va - Ve V向x轴投影,得到vA cos : = ve sin :vAB =vA uvetan; =OA - tan :3、刨床急回机构
30、如下列图.曲柄OA的角速度为* ,通过套筒A带动摇杆O1B摆动. OA=r, OO1 =l ,求当OA水平时018的角速度.解:选取滑块 A作为研究的动点,把动参考系固定在摇杆O1B上,点A的绝对运动是以点 O为圆心的圆周运动,相对运动是沿OiB方向的直线运动,而牵连运动那么是摇杆绕 .1轴的摆动.ve = va sin = r sinve =QA101A = , (l2 r2) >r2J(l2r2)4、图示曲柄滑道机构,圆弧轨道的半径r=OA = 10 cm ,曲柄绕轴0 以匀速n= 120 r/min转动,求当邛=30 0时滑道BCD的速度和加速度.解:取滑块 A为动点,动系与滑道
31、BCD固连.那么绝对运动为圆周运动,相对 运动为圆周运动,牵连运动为直线运动.n 二1速度求得曲柄 oa转动的角速度为s = =4n rad/s30Va =Ve vr Va = v, 0A 式叫困你Cm/S由几何关系可得Ve 飞:K2*Cm停cm/se I aVBCDVBVD =超甯Cm6Scm/s_ BCD _ en2加速度 aa - ae ar - ae ar ar22 oa=4二2 10 =1579cm/s2将加速度向nar2_2Vr2 _ 125.6201A 102= 1579 cm/s“轴上投影有:.:-aa cos60c = -ae cos300 + anaacos60'
32、a;1579 0.5 1579a,二; 二 一cos301J3/23 = 30°时,OA杆的角速度.2 .2=2740 cm/s2 = 27.4 m/s25、曲柄OA长为R,通过滑块 A使导杆BC和DE在固定滑道内上下滑动,当 为与、角加速度为 8.试求该瞬时点 B的速度与加速度.解:取滑块A为动点,导杆为动系,那么绝对运动为圆周运动,相对运动为直线运动,牵连运动为直线运动.1速度Va = Ve + % = 0A =R&3 c由几何关系可得Ve = Va cos =R2n2加速度aa = aa+aa = ae+ar其中aa = Ra; = R 2将加速度向n轴上投影有:a;
33、cos* - a; sin* = ae解得、3R8、如下列图,摇杆机构的滑杆AB以等速v向上运动.摇杆长 OC=a,距离OD=l.求当中=:时点C的速度的大小.解:取套筒 A为动点,动系固连在 OC上,如图a设OC干角速度为0,其转向逆时针.由题意及几何关系可得va = V(1) ve =8 OA(2)Va =Vecos22 2(3) OA = v'l +V t (4)l ,、cos =(5) OA将式1、2、4、5代入式3中,得_ . 2,22.2、OA =.tOA2(v2t2 l2)所以 vla2,2V tl2vla当中=£时,v,t =l4va2l4、运动机构如下列图,
34、滑块B沿铅垂槽向下滑动,匀速度 Vb ,连杆AB长L ,半径为R的圆轮沿水平直线轨迹作纯滚动.求图示位置夹角为日时,圆轮的角速度 .解:因AB杆做平面运动,由 A、B两点的速度方向可判断 C点为AB杆的速度瞬心,那么有VBVB'AB ="BC LsinvA =CA AB = L cosVbL sin1"vB co"对于圆轮A,接地点为其速度瞬心于是可得VAVB cotR 一 R5、在如下列图的四连杆机构中,OA=r , AB=b, O1B =d ,曲柄 OA以匀角速度绕轴O转动.试求在图示位置时,杆 AB的角速度8ab,以及摆杆OiB的角速度®
35、1.解:由题意分析可知,利用速度瞬心法,ACABAB杆为平面运动,A点和B点的速度方向如下列图,C点为速度瞬心.由几何关系可知BCAC=2b3bABACABBCABBC3d3 ,6、四连杆机构中 O1B = l , AB = ,l , oa以0 绕O轴转动.求:1 AB杆的角速度;2 B点的速度.解:由题意分析可知,AB杆为平面运动,A点和B点的速度方向如下列图,利用速度瞬心法,C点为速度瞬心.由几何关系可知OA =、2l AB = BC = 3l AC = 32 22VaOA =12lABVaACVB = BC AB = l7、平面机构如下列图.:OA=30cm , AB=20cm.在图示位
36、置时,oa杆的角速度 切=2rad/s,e=30O,0 =60°.求该瞬时滑块 B的速度.解:由题意分析可知,AB杆为平面运动,A点和B点的速度方向如图所示,利用速度瞬心法,C点为速度瞬心.由几何关系可知AC=AB=20cmvA =OA= 2 0.3= 0.6m/svAAB a -AC0.63rad /s0.2vB= AB BC=3 2AB cos300 = 3 2 0.2崔= 3m/s3、图示均质圆柱体的质量为 m半彳仝为r,放在倾角为60.的斜面上.一细绳缠绕在圆柱体上,其一端固定于点1A,此绳与A相连局部与斜面平行. 假设圆枉体与斜面间的摩擦系数为f =-,试求其中央沿斜面落下
37、的加速度 a“3解:取均质圆柱为研究对象,其受力如图a所示,圆柱作平面运动,那么其平面运动J =(Ft -F)r(1)微分方程为0 - Fn mg cos60 而maC = mg sin 60 - Ft - F (3)F = fF N(4)圆柱沿斜面向下滑动,可看作沿AD绳向下滚动,且只滚不滑,所以有aC=a rf把上式及f 代入式3、4解方程1至4,得3aC = 0.355g方向沿斜面向下(b)所示,A和B均作平4、均质实心圆柱体 A和薄铁环B的质量均为 m半径都等于r,两者用杆#阕林f AB的加速度和杆的内力.分别取圆柱 A和薄铁环B为研究对象,其受力分析如图( a)、面运动,杆AB作平动
38、,由题意知1aA =aB=a,aA = aBma = mg sin 二-FT - F 1(1)对圆柱A有FJa:(2)ma = T mgsin - F2(3)对薄铁环B有F2=Jb:(4)联立求解式(1)、(3)、(4),并将Ja2,Jb=mr2 , Ft = FT ,以及根据只滚不滑条件得到的 a = a r代入,解得L 1FT = - mgsin1(压力)44及 a = - gsin5、图不一长为Fox =0L,重为P的均质杆OA被绳与钱O固定于水#杆的角加速度a =四,求该瞬时轴 O的反力.2Ly匚lFoy = mg - m -二mg4取整体研究,受力分析如图应用质心运动定理l 2m 一
39、 ' = 0 = F0x2m ; : = mg - F°y6、图示两带轮的半径为OxFOymgmg4R1和R2,其质量各为 m1和m 2,解:分别取两皮带轮为研究对象,其受力分析如下列图, 其中Ti =T1 ,T2以顺时针转向为正,分别应用两轮对其转动轴的转动微分方程有"W =mg两轮以胶带相连接,#求第一个带轮的角加速度.Ji-1 =M -(T1 -T2)R1(1)FFJ2: 2 =(T1 -T2 )R2 -M (2)将工=Ti , T2 =丁2 , : 1 : : 2 = R2 : R代入式(1)、(2),联立解得式中3=*,独-旦MR22JJ且JiJ22R22
40、(R2M - RM )-1 / . 、r r 2(m m2)RzR为m2,作用在鼓轮上的力偶矩为M ,鼓轮对转轴的转动惯量为Jo ,轨道的倾角为9.设绳的质量和各处摩擦均忽略不计,求小车的加速度解 视小车为质点,取小车与鼓轮组成质点系.以顺时针为正,此质点系对O轴的动量矩为LO = JOm2VR作用于质点系的外力除力偶M重力P1和P2外,尚有轴承O的反力Fox和Foy,轨道对车的约束力FM其中P1, Fox, Foy对O轴力矩为零.将P2沿轨道有其垂直方向分解为Pt和Pn, Pn与Fn相抵消,而P =P2 sin = m2g sin U,那么系统外力对O轴的矩为M(e)= M - m2g si
41、n 日 R由质点系对o轴的动量矩定理,d . 一 一一JO mvR = M - m,gsin RCO因v dv , aR dt2 .MR - m2gR sin ?a 二2,于是解得Jo m2R假设m > mzgRsin 9 ,那么a>0,小车的加速度沿斜坡向上.7、图示结构在水平面内,均质杆 AB重P,长2a (OA=OB= a ,长2 a ,摩擦及滑块重不计.开始时在图示位置 AB角速度为零.在AB杆上作用有不变偶矩 M均质杆AC重Q,求转过90°时AB杆的角速度.Ti =01 2 . T2 - J AB AB211 /c、(2a)2 12ij 22 P(AB11 Q,c、2(2a)3g2ACP Q 22a ab6gOA= AC ACT2 -Ti 八 W'AB2(P Q)a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木质家具制作工岗前认证考核试卷含答案
- 区块链应用操作员班组考核水平考核试卷含答案
- 海南省万宁市民族中学2026届高二上生物期末学业水平测试模拟试题含解析
- 2025浙江绍兴市人才发展集团有限公司招聘20人笔试参考题库附带答案详解(3卷)
- 2025浙江中国电信江山分公司招聘(若干人)笔试参考题库附带答案详解(3卷)
- 2025新疆能源集团和田能源矿业有限责任公司招聘笔试参考题库附带答案详解(3卷)
- 2025年西藏泛在等七家公司供电局招聘140名工作人员笔试参考题库附带答案详解(3卷)
- 2025年四川甘孜州森工集团有限公司工作人员招聘58人笔试参考题库附带答案详解(3卷)
- 2025年下半年湖南能源集团社会招聘171人笔试参考题库附带答案详解(3卷)
- 2025四川省酒业集团有限责任公司下属子公司招聘笔试参考题库附带答案详解(3卷)
- 2025年国家开放大学《法学导论》期末考试备考题库及答案解析
- 物业公司动火安全管理制度
- 洗衣房安全培训课件
- 一堂有趣的实验课作文(6篇)
- 幕墙创优工程汇报材料
- 2025年铁岭银行见习生招聘50人笔试备考试题及答案解析
- 老年人穿衣搭配课件
- 【2025年】嘉兴市委宣传部所属事业单位选聘工作人员考试试卷及参考答案
- 二手房意向金合同范本
- 充电桩与后台服务器通讯协议V2G
- 抵御宗教极端思想课件
评论
0/150
提交评论