![ATLAS探测器上双玻色子WZ产生截面的精确测量[S]_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/6ccff6a8-230b-4eba-b5b2-d90358d6439c/6ccff6a8-230b-4eba-b5b2-d90358d6439c1.gif)
![ATLAS探测器上双玻色子WZ产生截面的精确测量[S]_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/6ccff6a8-230b-4eba-b5b2-d90358d6439c/6ccff6a8-230b-4eba-b5b2-d90358d6439c2.gif)
![ATLAS探测器上双玻色子WZ产生截面的精确测量[S]_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/6ccff6a8-230b-4eba-b5b2-d90358d6439c/6ccff6a8-230b-4eba-b5b2-d90358d6439c3.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、ATLAS探测器上双玻色子WZ产生截面的精确测量S 英文题名 Measurement of Diboson WZ Production Cross Section with the ATLAS Detector 专业 粒子物理与原子核物理 关键词 LHC; ATLAS; 标准模型; 双玻色子; WZ; 产生截面; 英文关键词 LHC; ATLAS; Standard Model; Diboson; WZ; Cross Section; 中文摘要 本论文通过Monte-Carlo模拟数据测量双玻色子W±Z的产生截面,
2、来检验粒子物理中 的标准模型。标准模型预言W+Z的产生截面是29.4 pb,W?Z的产生截面是18.4 pb。欧洲核子中 心(CERN)所建造的大型强子对撞机(LHC)提供了中心能量为14TeV的质子-质子对撞束流,运行在 LHC上的ATLAS探测器被用来探测W和Z粒子。双玻色子WZ的研究利用了ATLAS CSC模拟数据,其中 包括了触发信息、探测器刻度和位置修正。双玻色子WZ的测量是通过测量W和Z衰变产生的三轻 子末态(eee, ee,e,和)进行的,其中W衰变到一个带电轻子和中微子,Z衰 变到一对电荷符号相反的轻子对。有关WZ事例的判选、探测效率和本底压制都将详细讲述。经 过分析,对于积分
3、亮度1 fb?1的数据,我们可以观测到53个W±Z信号事例和8个本底事例,信噪比 达到了6.7。双玻色子W±Z在ppWZ + X( S = 14 TeV)时的测量截面为:?Br =53. 43?+160.5.0fb(包含了事例判选效率),这和标准模型的理论预言是相符合的。最后介绍了数据 分析过程中使用的一种新的统计学方法:Boosted Deci. 英文摘要 This dissertation describes a test of the Standard Model (SM) of particle physics by measuring the probabilit
4、y, or cross section, of simultaneously producing a W boson and a Z boson from Monte-Carlo simulated data of proton-proton collisions. The SM predicts the total W+Z production cross section to be 29.4 pb and the W?Z production cross section to be 18.4 pb. The 14 TeV center-of-mass energy proton-proto
5、n collisions are provided by the CERN (European Organization for Nuclear Research) LHC (Large Hadron Co. 摘要 5-6 ABSTRACT 6 Chapter 1 Introduction 11-18 Chapter 2 Standard Model and WZ Physics 18-26 2.1 The Standard Model and Particle Physics 18-19 2.2 Electrowea
6、k Interactions 19-22 2.3 WZ Production in the Standard Model 22-26 2.3.1 WZ Production Mechanisms 22-23 2.3.2 Standard Model Predictions for WZ Production 23-24
7、0; 2.3.3 Experimental Signature of WZ Production 24-26 Chapter 3 LHC and ATLAS 26-52 3.1 CERN 26-27 3.2 The LHC project 27-34 3.2.1 The design concept of the LHC 29-31 3.
8、2.2 Performance of the LHC 31-34 3.3 LHC experiments 34-36 3.3.1 ATLAS 34 3.3.2 CMS 34 3.3.3 LHCb and B physics 34-35
9、0; 3.3.4 ALICE and quark-gluon plasma 35-36 3.4 The ATLAS experiment 36-52 3.4.1 The ATLAS detector 36-38 3.4.2 Magnet System 38-40 3.4.3 Inner De
10、tector 40-43 3.4.4 Calorimetry 43-45 3.4.5 Muon system 45-49 3.4.6 Trigger and data-acquisition system 49-52 Chapter 4 Data Set 52-61 4.1 Introduction 5
11、2 4.2 Cross-Sections of Physical Processes 52-55 4.3 Monte Carlo Simulation for ATLAS 55-56 4.4 The Monte Carlo Event Generators for WZ analysis 56-58 4.5 Experimental signals and background 58-61 Chapter 5 Data Analysis 61-
12、81 5.1 Physics objects reconstruction and lepton ID efficiencies 61-64 5.1.1 Electron identification and selection efficiency 61-62 5.1.2 Muon reconstruction and identification efficiency 62-63 &
13、#160; 5.1.3 Jets 63-64 5.1.4 Missing transverse energy 64 5.2 Pre-selection of the W±Z events 64-68 5.3 Final selection with tightened straight cuts 68-71 5.4
14、Final selection using Boosted Decision Tree technique 71-76 5.5 Results 76-81 5.5.1 W±Z detection sensitivity for 1fb?1 integrated luminosity 76-77 5.5.2 Cross-section measurement uncertaint
15、y studies 77-79 5.5.3 BDT training stability test 79-81 Chapter 6 Advanced Data Analysis Method 81-92 6.1 Introduction 81 6.2 Boosted Decision Trees (BDT) 81-90 6.2.1 Booking o
16、ptions 82-84 6.2.2 Description and implementation 84-89 6.2.3 Variable ranking 89-90 6.2.4 Performance 90 6.3 Use BDT method in TMVA package 90-92 Concl
17、usion 92-93 Appendices 93-119 Reference 119-124 Acknowledgments 124-126 Publications 126 3.4.3 Inner Detector 40-43 3.4.4 Calorimetry 43-45 3.4.5 Muon system 45-49 &
18、#160; 3.4.6 Trigger and data-acquisition system 49-52 Chapter 4 Data Set 52-61 4.1 Introduction 52 4.2 Cross-Sections of Physical Processes 52-55 4.3 Monte Carlo Simulation for ATLAS 55-56 4.4 T
19、he Monte Carlo Event Generators for WZ analysis 56-58 4.5 Experimental signals and background 58-61 Chapter 5 Data Analysis 61-81 5.1 Physics objects reconstruction and lepton ID efficiencies 61-64 5.1.1 Electron identi
20、fication and selection efficiency 61-62 5.1.2 Muon reconstruction and identification efficiency 62-63 5.1.3 Jets 63-64 5.1.4 Missing transverse energy 64
21、; 5.2 Pre-selection of the W±Z events 64-68 5.3 Final selection with tightened straight cuts 68-71 5.4 Final selection using Boosted Decision Tree technique 71-76 5.5 Results 76-81 5.5.1 W±Z
22、 detection sensitivity for 1fb?1 integrated luminosity 76-77 5.5.2 Cross-section measurement uncertainty studies 77-79 5.5.3 BDT training stability test 79-81 Chapter 6 Advanced Data Analysis Method 81-92
23、60; 6.1 Introduction 81 6.2 Boosted Decision Trees (BDT) 81-90 6.2.1 Booking options 82-84 6.2.2 Description and implementation 84-89 6.2.3 Variab
24、le ranking 89-90 6.2.4 Performance 90 6.3 Use BDT method in TMVA package 90-92 Conclusion 92-93 Appendices 93-119 Reference 119-124 Acknowledgments 124-126 Publications 126 3.4.3 Inner Detector 4
25、0-43 3.4.4 Calorimetry 43-45 3.4.5 Muon system 45-49 3.4.6 Trigger and data-acquisition system 49-52 Chapter 4 Data Set 52-61 4.1 Introduction 52
26、 4.2 Cross-Sections of Physical Processes 52-55 4.3 Monte Carlo Simulation for ATLAS 55-56 4.4 The Monte Carlo Event Generators for WZ analysis 56-58 4.5 Experimental signals and background 58-61 Chapter 5 Data Analysis 61-81
27、; 5.1 Physics objects reconstruction and lepton ID efficiencies 61-64 5.1.1 Electron identification and selection efficiency 61-62 5.1.2 Muon reconstruction and identification efficiency 62-63
28、60; 5.1.3 Jets 63-64 5.1.4 Missing transverse energy 64 5.2 Pre-selection of the W±Z events 64-68 5.3 Final selection with tightened straight cuts 68-71 5.4 Final selection using Boosted Decision Tree techni
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纤维原料在冶金行业中的应用考核试卷
- 管道工程环境保护法律法规政策研究与探讨考核试卷
- 纺织品在家居绿植养护的创新考核试卷
- 纺织品物流配送考核试卷
- 老年营养与餐饮服务考核试卷
- 生物农药田间试验与农业人才培养合同
- 大型综合体建筑工程质量监管及综合评价协议
- 高效流水线工人岗位竞聘及劳务派遣合同
- 智能家居全屋定制智能家居系统集成与施工一体化服务合同
- 区块链矿机网络交换机租赁与智能化升级合同
- 屋顶分布式光伏项目可行性研究报告
- 农业综合执法大比武测试题
- 时花采购供应投标方案(技术方案)
- 专题14 阅读理解七选五-【好题汇编】五年(2020-2024)高考英语真题分类汇编
- 国开《Windows网络操作系统管理》形考任务5-配置DNS服务实训
- 创业管理(上海财经大学)智慧树知到期末考试答案章节答案2024年上海财经大学
- 高中物理必修二《动能和动能定理》典型题练习(含答案)
- 《公路桥涵施工技术规范》JTGT3650-2020
- JT-T-1230-2018机动车发动机冷却液无机阴离子测定法离子色谱法
- 检验科仪器故障应急预案
- 任务三 撰写直播脚本-活动2 商品直播脚本
评论
0/150
提交评论