



付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验报告1 实验题目儿童麻疹流行蔓延的数学模型2 实验问题陈述试组建一个能描述儿童麻疹流行蔓延的数学模型,我们将考虑在接种疫苗成为有效的防疫手段之前的麻疹的流行。下表一给出了英国伦敦在1647 年-1660年间每年麻疹病的死亡人数。表一:伦敦每年麻疹死亡人数(1647-1660 )年代4748495051525354555657585960人数5923333362852111531580674可以看出, 它是以 2 年为周期的周期性流行。已知麻疹的潜伏期是0.5 周,在这段时期内一个被感染的孩子表面看来是正常的,但却会传染给别人。过了这段时间后,患病的孩子一直被隔离到痊愈为止。痊愈后孩子是免疫
2、的。假设每个感染者随机地与他人接触。证明你的模型有某种周期性质。如果不然, 就修改你的模型。因为麻疹的流行肯定是趋于周期式地出现的。估计你组建的模型中的参数,以拟合 0.5 周的潜伏期及2 年周期性流行的观测结果。判断估计出的参数是否实际。3 实验目的通过表中数据, 建立麻疹流行蔓延模型, 以拟合 0.5 周的潜伏期及 2 年周期性流行的观测结果,判断估计出的参数是否实际。4 实验内容模型假设:( 1)除感病特征外,人群中的个体间没有差异,感病者与易感者的个体在人群中混合是均匀的。( 2)人群的数量足够大,只考虑传染过程的平均效应。( 3)易感者感病的机会与他接触感病者的机会成正比。( 4)疾
3、病的传染率为常数。( 5)一般的麻疹爆发在几十天,我们不考虑在一次麻疹爆发时间内某地区的出生人口和死亡人口,以及人口的迁入和迁出。( 6)感病痊愈者(即移出者)移出模型,而不再成为易感者人群中的成员。变量说明:S(t) :易感者在人群中所占的比例I(t):感病者在人群中所占的比例R(t) :移出者在人群中所占的比例K:疾病的传染率h:单位时间内痊愈的百分数一个传染期内每个病人有效接触易感者的平均人数,成为接触数-k / h初始时刻 S(0)S0 (0), I (0)I 0 (0), R(0)R00问题分析 :对麻疹流行蔓延的周期性质进行说明。通过对 SIR 模型及麻疹流行的机理分析,在一次麻疹
4、爆发以后绝大多数人体内具有了麻疹免疫抗体, 因此绝大多数新生婴儿体内具有抗体,考虑到引起流行周期的原因是易感人群的积累, 易感人群来源于新生儿因母体抗体逐渐消失而易感、既往没有患过麻疹的儿童和成人。通常认为在自然感染状态下, 这些易感者积累到一个以上出生队列时, 就达到爆发的 “临界”。若将同一年出生的人群组定义为一个出生队列,出生队列出现的周期性在一定程度上可以说明麻疹流行的周期性。所以我们用积累一个出生队列的时间来表示一次爆发的临界。模型建立通过对问题的分析,模型可以表示为:dSkISdtdIS(t) I (t) R(t ) 1kIS hI ,其中dtdRhIdt考虑到初始条件,可知上述三
5、个方程是相容的,因此可以化简为:dSdtdIkIS, S(0)S0kIShI , I (0)I 0dt由于方程组无法求出解析解,故可以在 S-I 的像平面上讨论解的性质,相轨线的定义域为:D( S,I)|S0,I0,SI1由以上方程可知轨线的方程为:dI,I(S)I,h / k10dS S0其解为:I (S)(S0I 0 )Sln S 。S05 实验结果分析与讨论由题目中表格给出的麻疹死亡人数与年份的对应关系,用MATLAB编程画出的曲线图如图一所示:【图一】由于对 S(t) 和 I(t)的求 1 解非常困难,所以先用数值计算的方法来预估计一般变化规律。在方程( 1)中设 k=1, h=0.3
6、 , I(0)=0.02,S(0)=0.98 。编写 MATLAB程序并运行得到如图二,S(t)和I(t)的【图二】【注】图中蓝色曲线为I(t),即病人比例;绿色曲线为S(t),从时间流程图中可以看出,随着时间的增加,S(t) 单调递减,即健康人比例。I(t)在 t7 时达到峰值以后会随时间减小,当t25 时, S(t)值很小,而I(t)=0。说明在一次麻疹疫情爆发以后绝大多数的人体内已经具有麻疹免疫抗体,被移出除传染系统。c. 对结果的分析参数中取h 为 0.3 ,则潜伏期为1/h=3.33天,约等于0.5 周。同时我们可以看到把h取为0.3得到的曲线符合实际情况,说明潜伏期为麻疹病毒的潜伏
7、期是0.5 周是正确的观点。另外,当t时,S(t)0.0398 ,I (t )0 ,说明在一次麻疹疫情爆发以后绝大多数的人体内已经具有麻疹免疫抗体,被移出除传染系统。查资料知,绝大多数的婴儿在 9 个月时血内的母亲抗体已测不出,有些婴儿体内的抗体存在时间可以长达 15 个月,所以可以取 1 年为一个出生队列产生的时间,用时间坐标来表示出生队列与麻疹流行周期的关系如图三:【图三】【注】:表示第一年的年初;表示第一年年末;表示第二年年初;表示第二年年末;在时刻出生的婴儿到时刻抗体消失,时刻出生的婴儿到时刻抗体消失。易感人群从时刻开始积累,在时刻易感人群刚好积累一个出生队列,因此易感人群积累一个出生
8、队列的时间为2 年。当易感人群积累到一个出生队列时,就是第二次麻疹爆发的“临界”,因此可以说麻疹流行的周期为2 年。综上所述,儿童麻疹流行蔓延的模型具有周期性,且以0.5 周的潜伏期和2 年的周期性流行。故模型所得结果与题目要求是一致的。6 实验程序( Matlab 或者其它软件语言陈述)用 MATLAB编写程序如下:(1) 画图一:x=47:60;y=5 92 3 33 33 62 8 52 11 153 15 80 6 74;plot(x,y,'rp-.')xlabel(' 年份 ' ); ylabel(' 伦敦每年麻疹病死亡人数' );(2) S(t)和 I(t)的变化规律及画图三M文件为: (chuanran.m)functiony=chuanran(t,x)a=1;b=0.3;y=a*x(1)*x(2)-b*x(1);-a*x(1)*x(2);命令框中输入:>> ts=0:50;>> x0=0.020,0.98;>> t,x=ode45('chuanran',ts,x0);>>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级语文教学反思范文汇编
- 工程项目结题验收报告标准模板
- 年度招聘规划与预算分配方案书
- 小学口语交际课堂活动设计案例
- 小学五年级英语时态复习资料合集
- 酒店员工服务规范与礼仪培训
- 医疗器械注册及合规管理指南
- 电话销售绩效考核及薪酬方案
- 统编版五年级古诗词赏析与翻译
- 危险化学品安全分类管理报告
- 仿生机器鱼行业规模分析
- DZ-T 0270-2014地下水监测井建设规范
- 中英文员工评估表
- β内酰胺类抗菌药物皮肤试验指导原则(2021版)
- 小学语文论文:浅谈小学六年级语文有效教学
- 学生资助政策宣传主题班会PPT
- 人教版初中语文《名著导读》
- 大一统专题复习-高中历史教学资料
- YS/T 1018-2015铼粒
- 【高等数学练习题】沈阳大学专升本自考真题汇总(附答案解析)
- 合作项目管理办法
评论
0/150
提交评论