




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高一数学必修向量在平面几何解题中的应用高一数学必修向量在平面几何解题中的应用一、向量有关知识复习一、向量有关知识复习(1)向量共线的充要条件:ab 与 共线 0, bRba(2)向量垂直的充要条件:0, 00bababa(3)两向量相等充要条件:, baba且方向相同。11221 22 1( , )( , ) /0ax y bx y a bxyx y ,11221 21 2( , )( , )0ax y bx y a bxxyy ,11221212( , )( , ),ax y bx y a bxx yy ,(4)平面向量基本定理1212aeee e ,其中 ,不共线。 , 为唯一确定的常数高
2、一数学必修向量在平面几何解题中的应用二、应用向量知识证明平面几何有关定理二、应用向量知识证明平面几何有关定理例例1、证明直径所对的圆周角是直角、证明直径所对的圆周角是直角ABCO如图所示,已知 O,AB为直径,C为 O上任意一点。求证ACB=90分析分析:要证ACB=90,只须证向量 ,即 。CBAC 0CBAC2222baba022rr即 ,ACB=900CBAC思考:能否用向量坐标形式证明?思考:能否用向量坐标形式证明? 解:设AO=a, OC=bACab 则, 由此可得: AC CB=(a+b)(a-b)? CBab CB高一数学必修向量在平面几何解题中的应用二、应用向量知识证明平面几何
3、有关定理二、应用向量知识证明平面几何有关定理例例2、证明平行四边形四边平方和等于两对角线平方和、证明平行四边形四边平方和等于两对角线平方和ABDC已知:平行四边形ABCD。求证:222222BDACDACDBCABbADaAB ,解:解:设 ,则 baDBbaACaDAbBC;,分析:分析:因为平行四边形对边平行且相等,故设 其它线段对应向量用它们表示。bADaAB ,)( 2222222baDACDBCAB2222babaBDAC222222222222bababbaabbaa222222BDACDACDBCAB高一数学必修向量在平面几何解题中的应用三、应用向量知识证明三线共点、三点共线三、
4、应用向量知识证明三线共点、三点共线例例3、已知:如图、已知:如图AD、BE、CF是是ABC三条高三条高求证:求证:AD、BE、CF交于一点交于一点FABCDEABCDEH分析:分析:思路一:设AD与BE交于H,只要证CHAB,即高CF与CH重合,即CF过点H由此可设aBC bCApCH利用ADBC,BECA,对应向量垂直。00)(apabapbBCHA00)(bpabbpaCABH0)(0bapbpapBACHBACH0BACH 只须证明0p BA 如何证?高一数学必修向量在平面几何解题中的应用三、应用向量知识证明三线共点、三点共线三、应用向量知识证明三线共点、三点共线例例3、已知:如图、已知
5、:如图AD、BE、CF是是ABC三条高三条高求证:求证:AD、BE、CF交于一点交于一点ABCDEH解:解:设AD与BE交于H,aBC bCApCH00)(apabapbBCHA00)(bpabbpaCABH0)(0bapbpapBACHBACH0即高CF与CH重合,CF过点H,AD、BE、CF交于一点。高一数学必修向量在平面几何解题中的应用三、应用向量知识证明三线共点、三点共线三、应用向量知识证明三线共点、三点共线例例4、如图已知、如图已知ABC两边两边AB、AC的中点分别为的中点分别为M、N,在在BN延长线上取点延长线上取点P,使,使NP=BN,在,在CM延长线上取点延长线上取点Q,使使M
6、Q=CM。求证:。求证:P、A、Q三点共线三点共线ABCNMQP解解:设bACaAB ,则aAMbAN21,21由此可得abNPBN21baMQCM21baabPANPANPA)(,baabAQMQAMAQ)(,AQPA 即 故有 ,且它们有公共点A,所以P、A、Q三点共线AQPA /高一数学必修向量在平面几何解题中的应用四、应用向量知识证明等式、求值四、应用向量知识证明等式、求值例例5、如图、如图ABCD是正方形是正方形M是是BC的中点,将正方形折起,的中点,将正方形折起, 使点使点A与与M重合,设折痕为重合,设折痕为EF,若正方形面积为,若正方形面积为64, 求求AEM的面积的面积ABCD
7、MNEF分析分析:如图建立坐标系,设E(e,0),M(8,4),N是AM的中点,故N(4,2) (8,4)AM AEANEN=(4,2)-(e,0)=(4-e,2)(8,4) (4,2)0AMENe 解得:e=5故AEM的面积为10高一数学必修向量在平面几何解题中的应用四、应用向量知识证明等式、求值四、应用向量知识证明等式、求值例例5、如图、如图ABCD是正方形是正方形M是是BC的中点,将正方形折起,的中点,将正方形折起, 使点使点A与与M重合,设折痕为重合,设折痕为EF,若正方形面积为,若正方形面积为64, 求求AEM的面积的面积ABCDMNEF解:解:如图建立坐标系,设E(e,0),由 正
8、方形面积为64,可得边长为8 由题意可得M(8,4),N是AM的 中点,故N(4,2) )4 , 8(AMAEANEN=(4,2)-(e,0)=(4-e,2)0)2 ,4()4 , 8(eENAM解得:e=5 即AE=51102AEMSAE BM高一数学必修向量在平面几何解题中的应用四、应用向量知识证明等式、求值四、应用向量知识证明等式、求值练习:练习:PQ过过OAB的重心的重心G,且,且OP=mOA,OQ=nOB 求证:求证:311nm分析分析:由题意OP=mOA,OQ=nOB, 联想线段的定比分点,利 用向量坐标知识进行求解。OABGPQ由PO=mOA, QO=nOB可知:OBnQOOAm
9、PO, O分 的比为 ,O分 的比为PAQB由此可设 由向量定比分点公式,可求P、Q的坐标,而G为重心,其坐标也可求出,进而由向量 ,得到 m n 的关系。),()0 ,(221yxQxPGQPG/-m -n? ?高一数学必修向量在平面几何解题中的应用四、应用向量知识证明等式、求值四、应用向量知识证明等式、求值练习:练习:PQ过过OAB的重心的重心G,且,且OP=mOA,OQ=nOB 求证:求证:311nmOABGPQ证:证:如图建立坐标系, 设),(),0 ,(),()0 ,(221cbBaAyxQxP所以重心G的坐标为)3,3(cba 由PO=mOA, QO=nOB可知:OBnQOOAmPO,即O分 的比为-m,O分 的比为-n PAQB求得),()0 ,(ncnbQmaP由向量 可得:GQPG/)3,3(cmabaPG)3,3(cncbanbGQ0)3(3)3)(3(banbccncmaba化简得:311nm高一数学必修向量在平面几何解题中的应用五、小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省广州市白云区2023-2024学年五年级下学期语文期末试卷(含答案)
- 2025年度品牌形象设计委托合同协议书范本
- 2025年智能设备采购合同范本
- 2025年内蒙古劳动合同书模板
- 2025电子产品租赁合同模板
- 2025租赁合同违约金条款
- 2025授权代理的合同范本协议
- 2025年签订服务合同的关键注意事项
- 2025汽车购买合同协议书
- 2025硕士劳动合同争议调解
- 广州市黄埔区教育局招聘事业编制教职员考试真题2024
- 国际经济学(下册国际金融)克鲁格曼-中文答案
- 2025年宁夏银川市唐徕中学南校区中考一模英语试题(原卷版+解析版)
- 乡村民宿开发管理运营手册
- 殡葬服务笔试题库及答案
- 2025年光大银行校园招聘笔试参考题库(带答案)
- 中医康复理疗师职业指导试题及答案
- 全过程工程咨询投标方案(技术方案)
- 研究生教育高质量发展新动能推动方案
- 宁波十校2025届高三3月联考语文试卷(含答案解析)
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
评论
0/150
提交评论