




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2.2正、余弦定理的应用举例(2)知识梳理 2. 解斜三角形的应用问题,通常需根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出所要求的量,从而得到实际问题的解,其中建立数学模型的方法是我们的归宿,用数学手段来解决实际问题,是学习数学的根本目的。 3. 解题应根据已知合理选择正余弦定理,要求算法简洁、算式工整、计算准确。典例剖析题型一 正、余弦定理在几何中的应用例1如图所示,已知半圆的直径AB2,点C在AB的延长线上,BC1,点P为半圆上的一个动点,以DC为边作等边PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值解:设POB,四边形面积为,则在PO
2、C中,由余弦定理得:PC2OP2OC22OP·OCcos54cosOPCPCD(54cos)2sin()当即时,max2评述:本题中余弦定理为表示PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性另外,在求三角函数最值时,涉及到两角和正弦公式sin()sincoscossin的构造及逆用,应予以重视题型二 正、余弦定理在函数中的应用例2 如图,有两条相交成角的直线、,交点是,甲、乙分别在、上,起初甲离点千米,乙离点千米,后来两人同时用每小时千米的速度,甲沿 方向,乙沿方向步行,
3、(1)起初,两人的距离是多少?(2)用包含的式子表示小时后两人的距离;(3)什么时候两人的距离最短?解:(1)设甲、乙两人起初的位置是、,则 , 起初,两人的距离是(2)设甲、乙两人小时后的位置分别是,则,当时,;当时,所以,(3), 当时,即在第分钟末,最短。答:在第分钟末,两人的距离最短。评析:(2)中,分0t和t>两种情况进行讨论,但对两种情形的结果进行比较后发现,目标函数有统一的表达式,从而(3)中求最值是对这个统一的表达式进行运算的。备选题 正、余弦定理的综合应用aABCMN例3 如图,已知ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过ABC的中心G,
4、设ÐMGAa()(1)试将AGM、AGN的面积(分别记为S1与S2);表示为a的函数,(2)求y的最大值与最小值。D解析:(1)因为G是边长为1的正三角形ABC的中心,所以 AG,ÐMAG,由正弦定理得,则S1GM·GA·sina。同理可求得S2。(2)y72(3cot2a)因为,所以当a或a时,y取得最大值ymax240,当a时,y取得最小值ymin216。点评:三角函数有着广泛的应用,本题就是一个典型的范例。通过引入角度,将图形的语言转化为三角的符号语言,再通过局部的换元,又将问题转化为我们熟知的函数,这些解题思维的拐点。点击双基1在ABC中,则AB
5、C 的面积为( )A. B. C. D. 1解:S=4sin10sin50sin70=4cos20cos40cos80= =答案:CC2.如图所示:在一幢20m高的楼顶A测得对面一塔顶C的仰角为 60,塔基D的俯角为 45,则这座塔的高是( )A. 20m B. 10m C. (10+ 10)m D. (20+20)m A解:可知BAD=45,AE=20,AB=20, BAC=60,BDECB=ABtan60=20所以这座塔的高CD=(20+20)m答案:D3在ABC中,根据下列条件解三角形,则其中有两个解的是 ( )Ab = 10,A = 45°,B = 70° Ba =
6、 60,c = 48,B = 100°Ca = 7,b = 5,A = 80° Da = 14,b = 16,A = 45°解:A,B可根据余弦定理求解,只有一解,选项C中,A为锐角,且a>b, 只有一解.选项D中所以有两个解。答案:D4. 一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西600,另一灯塔在船的南偏西750,则这艘船是每小时航行_。解:10海里DCBA5某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则
7、第一辆车与第二辆车的距离与第二辆车与第三辆车的距离之间的关系为 ( ) A. B. C. D. 不能确定大小E解:依题意知BC=,CD=,BAC=CAD.ABC中,ACD中,BC<CD,即答案:C课后作业1.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( )A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里答案:A2.边长分别为5,7,8的三角形的最大角与最小角的和是( )A. 90 B. 120 C. 135 D. 150解:用余弦定理算出中间的角为60.答案:B3.
8、下列条件中,ABC是锐角三角形的是( )A.sinA+cosA=B.·0 C.tanA+tanB+tanC0 D.b=3,c=3,B=30°解:由sinA+cosA=得2sinAcosA=0,A为钝角.由·0,得·0,cos,0.B为钝角.由tanA+tanB+tanC0,得tan(A+B)·(1tanAtanB)+tanC0.tanAtanBtanC0,A、B、C都为锐角.由=,得sinC=,C=或.答案:C4、已知锐角三角形的边长分别为1,3,a,则a的范围是( )ABCD 解: <a<答案:B5.某市在“旧城改造”中计划内一块
9、如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要( ) A450a元B225a元 C150a元 D. 300a元 20米30米150° 解:S=150购买这种草皮至少要 150a元答案:C6.甲船在岛B的正南方A处,AB10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )A分钟B分钟C21.5分钟D2.15分钟解:设航行时间为t小时,则两船相距=t=-小时=分钟答案:A7.飞机沿水平方向飞行,在A处测得正前下方地面目标C得俯角为30
10、°,向前飞行10000米,到达B处,此时测得目标C的俯角为60°,这时飞机与地面目标的水平距离为( )A5000米B5000米C4000米D 米解:=30°, DBC=60°,AB=1000. CB=10000.BD=5000答案:A8如图,ABC是简易遮阳棚,A、B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为A75°B60°C50°D45°解:作CE平面ABD于E,则CDE是太阳光线与地面所成的角,即CDE=40°,延
11、长DE交直线AB于F,连结CF,则CFD是遮阳棚与地面所成的角,设为要使SABD最大,只需DF最大在CFD中,=DF=CF为定值,当=50°时,DF最大答案:C二填空题9.某船在海面A处测得灯塔C与A相距海里,且在北偏东方向;测得灯塔B与A相距海里,且在北偏西方向。船由向正北方向航行到D处,测得灯塔B在南偏西方向。这时灯塔C与D相距 海里 答案:10.在ABC中,已知 60°,如果ABC 两组解,则x的取值范围是 解:asinB<b<a,即xsin60<2<x答案:11一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶4h后,船
12、到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km答案:三解答题12.某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,才能到达M汽车站?解:由题设,画出示意图,设汽车前进20千米后到达B处。在ABC中,AC=31,BC=20,AB=21,由余弦定理得cosC=,则sinC =1- cosC =, sinC =,所以 sinMAC = sin(120-C)= sin120cosC - cos120sinC =在MAC中,由正弦定理得 MC =35 从而有MB= MC-BC=15答:汽车还需要行驶15千米才能到达M汽车站。13如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知,于A处测得水深,于B处测得水深,于C处测得水深,求DEF的余弦值。 解:作交BE于N,交CF于Mw.w.w.k.s.5.u.c.o.m , , 在中,由余弦定理,14. 在中,角A、B、C的对边分别为、,又的面积为.(1)求角C的大小;(2)求的值.解:(1)由已知得,所以,;(2)因为,所以,又因为,所以所以,=5思悟小结1.三角形中的边角问题的求解,或三角形的形状的判定,及其与三角形有关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园社团联合活动合作合同(2篇)
- 新质生产力范式
- 2025电商平台转让合同示范文本
- 医疗新质生产力绿色
- 2025融资租赁代理合同
- 2025在职员工兼职合同范本
- 2025年教师资格之幼儿保教知识与能力题库综合试卷A卷附答案
- 列强入侵与民族危机教学设计3人民版(美教案)
- 如何挖掘新质生产力
- 新质生产力党员
- 中职电子商务班级建设方案
- 《集控值班员培训》课件
- 白酒小作坊管理制度
- 2023年北京市石景山区社区工作者招聘考试真题
- 工程部部门岗位职责
- 中国芳香植物资源
- (完整版)语文作文纸方格纸模版(两种格式任选)
- 录播教室装修技术方案
- AB 753变频器简单操作培训(参数拷贝)
- JGJ59-2011建筑施工安全检查评分表-(完整版)
- 基于文化创意视角的妈祖文化旅游地产发展研究莆田妈祖文化旅游地产发展条件及思路研究
评论
0/150
提交评论