


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整式的乘法(基础)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含 有的字母,则连同它们的指数作为积的一个因式要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幕的乘法法则的综 合应用(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母 相乘,是同底数幕的乘法,按照“底数不变,指数相
2、加”进行计算; 只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一 个因式(3) 运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4) 三个或三个以上的单项式相乘同样适用以上法则. 要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加即 m(a b c) ma mb me.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化 为多个单项式乘单项式的问题.(2) 单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同
3、时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相力卩.即 a b m n am an bm bn.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于 两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的 二项式相乘: xaxb x (1) 3ab2a2b2abe ; a b x ab.【典型例题】类型一、单项式与单项式相乘(2) ( 2xn 1yn) ( 3xy)-x2
4、z(3) 6m2n (x y)3 gmn2 (y x)2 .【思路点拨】前两个题只要按单项式乘法法则运算即可,第(3)题应把x y与y x分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算.【答案与解析】解:(1)2 1 23aba b 2abc34 42a b c .n 1 n12(2) ( 2x y ) ( 3xy) x z23xn4yn1z .(3) 6m2n (x y)3 mn2 (y x)233 3/、52m n (x y).【总结升华】 举一反三:凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉.【变式】(2014?甘肃模拟)计算:2后? (- 2mn)
5、 ?(-丄n3).【答案】 解:2后? (- 2mr) ?(-丄nfn3)222 3=2 x( - 2)x( - 1) ( m x mriXm n)54=2mn .类型二、单项式与多项式相乘(1)ab2ab2 2ab-b ;233(2)1xy33 22y x (226xy );(3)3 2aab 0.6b24 >2a b23【答案与解析】解:(1)2ab2ab232ab 4b3(2)(3)!a2b33a2b22ab2 .313xy3 22yx2 (6xy2)2x2 y39xy4 6x3y2 .ab 0.6b24a2b233a2 ab 3b2254a2b234 3 34 9 4a b a
6、b .35【总结升华】计算时,符号的确定是关键,c 4, 22a b看作性质符号,把单项式乘以多项式的结果用可把单项式前和多项式前的“ + ”或“”号 “ + ”号连结,最后写成省略加号的代数和.举一反三:2【变式 1】2m(x 1)(x 1)(x2 1);n(6 m4n)m(a b)(a 2b) (a 2b)(a b);n .【答案】2解:原式 12m2n 2m2 4n2(3a 2b )(4 a 5b);m3 2n2212m2n 2m6n21 m6n212m2n - m6n2 .44【变式2】若n为自然数,试说明整式n 2n 1 2n n 1的值一定是3的倍数.【答案】解:n 2n 1 2n
7、 n 1 = 2n2 n 2n2 2n 3n因为3n能被3整除,所以整式n 2n 1 2n n 1的值一定是3的倍数.类型三、多项式与多项式相乘(4) 5x(x2 2x 1) (2x 3)(x 5).解:( 1)(3a2b )(4 a5b)12a215ab8ab 10b212a2 7ab 10b2.(2)(x1)(x 1)(x:2 1)(x2x x1)( x21) x4 1 .(3)(ab)(a 2b)(a2b)(ab)2 2 2 2(a ab 2b ) (a ab 2b )2 2 2 2a ab 2b a ab 2b(4)5x(:x2 2x 1)(2x3)( x5)【答案与解析】2ab.32
8、5x 8x 12x 15.【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项, 刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.C4、( 2014 秋?花垣县期末)解方程:(x+7)( x+5)-( x+1)( x+5) =42.【思路点拨】先算乘法,再合并同类项,移项,系数化成1即可.【答案与解析】解:(x+7) ( x+5)-( x+1) (x+5) =42,2 2 x+12x+35-( x +6x+5) =42,6x+30=42,6x=12,x=2.【总结升华】本题考查了解一元一次方程,多项式乘以多项式的应用,主要考查学生的计 算能力,难度适中.举一反三:【变式】求出使(3x 2)(3x 4)9(x 2)(x 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据租赁风控-洞察及研究
- 教师招聘之《幼儿教师招聘》综合检测模拟卷含答案详解【突破训练】
- 押题宝典教师招聘之《小学教师招聘》试题及参考答案详解【新】
- 混合调试方法研究-洞察及研究
- 数字孪生赋能2025年医疗设备制造精准化生产研究报告
- 建筑市政围挡施工方案
- 建筑垃圾清理施工方案
- 教师招聘之《幼儿教师招聘》能力测试B卷及答案详解一套
- 建德高端宾馆施工方案
- 家庭菜地滴灌施工方案
- 2025四川蜀道建筑科技有限公司招聘16人考试模拟试题及答案解析
- 第1课 认识工具教学设计-2025-2026学年小学书法西泠版三年级上册-西泠版
- 第3课 中华文明的起源 课件( 内嵌视频)部编版七年级历史上册
- 体育模拟上课培训课件
- 2025年秋新人教版数学二年级上册全册教案
- 标准件供货协议合同范本
- 2025广东茂名信宜市总工会招聘社会化工会工作者4人笔试备考试题及答案解析
- 纳税申报流程课件
- 2025年在线少儿英语培训行业当前发展趋势与投资机遇洞察报告
- 石油管道保护施工方案
- 《2025年9.3纪念抗日战争胜利80周年阅兵式观后感》
评论
0/150
提交评论