93多项式乘多项式_第1页
93多项式乘多项式_第2页
93多项式乘多项式_第3页
93多项式乘多项式_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、江南学校“导学研练”高效课堂教学案七年级数学学科(第二稿)主备:张美华课题9.3多项式乘多项式教学目标1、使学生掌握多项式的乘法法则;2、会进行多项式的乘法运算;3、结合教学内容渗透“转化”思想,发展学生的数学能力教学重点多项式的乘法法则及其应用教学难点多项式的乘法法则教学过程一、导入示标:1、掌握多项式的乘法法则;2、会进行多项式的乘法运算;二、自学助学:我们在上一节课里学习了单项式与多项式的乘法,请口算下列练习中的(1)、(2):(1)3x(x+y)=_(2)(a+b)k=_(3)(a+b)(m+n)=_共同研究多项式乘法的法则看图回答:abcd (1)长方形的长是_(2)、四个小长方形面

2、积分别是_(3)由(1),(2)可得出等式_这样得出了和上面一致的结论,即(a+b)(c+d)ac+ad+bc+bd三、研讨释疑:1.上述运算过程可以表示为引导学生观察式特征,讨论并回答:(1)如何用文字语言叙述多项式的乘法法则?(2)多项式与多项式相乘的步骤应该是什么?一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项;再把所得的结果相加2.例题1:计算:(1) (a+4)(a+3) (2) (2x5y)(3xy)例2 计算 (1)n(n+1)(n+2) (2) 四、及时巩固:1 计算:(1)(2)(3)(4)2判断题:(1)(a+b)(c+d)= ac+ad+bc;

3、( )(2)(a+b)(c+d)=ac+ad+ac+bd( )(3)(a+b)(c+d)=ac+ad+bc+bd( )(4)(a-b)(c-d)= ac+ ad+bc-ad( )A组题:1.把计算结果填入题后的括号内:(1)(x+y)(x-y)=( );(2)(x-y)2( );(3)(a+b)(x+y)( );(4)(3x+y)(x-2y)( );(5)(x-1)(x2+x+1)=( );(6)(3x+1)(x+2)=( );(7)(4y-1)(y-1)=( );(8)(2x- 3)(4-x)( );(9)(3a2+2)(4a+1)=( );(10)(5m+ 2)(4m2- 3)=( )2.

4、 长方形的长是(2a+ 1),宽是(a+b),求长方形的面积B组题1. 计算:(1)(xy-z)(2xy+z);(2)(10x3 - 5y2)(10x3 +5y2)2计算:(1)(3a-2)(a-1)+ (a+1)(a+2);(2)(3x+2)(3x-2)(9x2 +4)五、课堂小结:通过这节课你学到了什么?1、掌握多项式的乘法法则;2、会进行多项式的乘法运算;六、作业布置:见课本P74习题9.3 1、2、3、4题从学生原有的认知结构提出问题比较(3)与(1)、(2)在形式上有何不同?如何进行多项式乘以多项式的计算呢?这就是我们本节课所要研究的问题(a+b)(c+d)ac+ad+bc+bd引导学生观察式特征,讨论并回答:(1)如何用文字语言叙述多项式的乘法法则?(2)多项式与多项式相乘的步骤应该是什么?一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项;再把所得的结果相加结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式的规范性;(2)注意总结不同类型题目的解题方法、步骤和结果;(3)注意各项的符号,并要注意做到不重复、不遗漏在学生练习的同时,教师巡回辅导,因材施教,并注意根据信息反馈,及时提醒学生正确运用多项式的乘法法则,注意例题讲解时总

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论