量子力学导论第8章答案_第1页
量子力学导论第8章答案_第2页
量子力学导论第8章答案_第3页
量子力学导论第8章答案_第4页
量子力学导论第8章答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第八章 自旋8.1) 在表象中,求的本征态。解:在表象中,的矩阵表示为:设的本征矢(在表象中)为,则有可得及 。 则 则利用归一化条件,可求出的两个本征态为 。8.2) 在表象中,求的本征态, 是方向的单位矢.解:在表象中,的矩阵表示为, , (1)因此, (2)设的本征函数表示为,本征值为,则本征方程为,即 (3)由(3)式的系数行列式,可解得。对于,代回(3)式,可得归一化本征函数用表示,通常取为或 (4)后者形式上更加对称,它和前者相差因子,并无实质差别。若用的直角坐标分量来表示,可以取为或 (4)如,二者等价(仅有相因子的差别)。若,应取前者;若,应取后者。对于类似地可以求得或 (5)

2、或 或 (5)若,取; 若,取。8.3) 在本征态下,求和。解:但 (常数矩阵), ,类似有。8.4) (a)在本征态下,求的可能测值及相应的几率。(b)同第2题,若电子处于的自旋态下,求的各分量的可能测值及相应的几率以及的平均值。解:(a)利用8.2)题求得的本征函数,容易求出:在自旋态中,的几率为 (1)的几率为 (2)(b)在自旋态态,的几率为 (3)的几率为: (4)或 (5)考虑到 ,各分量以及各分量在的构造中地位对称,所以利用式(3)、(4)、(5),作轮换,就可推论出以下各点:的几率为, (6) (7)的几率为 (8) (9)将式(5)、(7)、(9)合并写成矢量形式如下:自旋态

3、中, (10)类似地,容易算出:自旋态中, (11)解二:(a)在自旋态中,的可能测值为本征值设相应的几率为及,则 (12)由于 (13)考虑到在的本征态中和的平均值为,的平均值即为其本征值,因此在态下, (14)由式(12)、(14),并利用,就可求出, (15)此即解一中的式(1)、(2)。(b)在式(14)中,是轴和的夹角。 轴和的选取是任意的。完全可以将原来的轴作为新的轴,而原来的取作新的轴。由此可知:在的自旋态中,的平均值仍为,即。再令轮换,即得自旋态中, (10)在态下各分量的取值大部分当然均为,其几率也可估照(a)中计算而写出,即的几率为 (6)的几率为 (8)的几率为 (3,4

4、)8.5) 证明(为常数)量8.7)由两个非全同粒子(自旋均为)组成的体系,设粒子间相互作用表为 (不考虑轨迹运动)。设初始时刻()粒子1自旋“向上”,粒子2自旋“向下”。求时刻时,(a) 粒子1自旋向上的几率(答:,取)(b) 粒子1和2的自旋向上的几率(答:)(c) 总自旋s=0和1的几率(答:都是)(d) 求和的平均值(答:,)。解:从求体系的自旋波函数入手,由于 (1)易见总自旋是守恒量,所以定态波函数可以选为、的共同本征函数,按照总自旋量子数的不同取值,本征函数和能级为 (2)时,体系的自旋态为 (3)因此,时波函数为 (4)即 (4)(a)由式(4)可知,在时刻,粒子1自旋“向上”同时粒子2自旋“向下”,相当于项的几率为。(b)粒子1和2自旋均“向上”相应于,式(4)中没有这种项的几率为。这是容易理解的。因为总自旋为守恒量,而体系初态,所以任何时刻必为0,不可能出现两个粒子均“向上”的情

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论