




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、镶镶 嵌嵌11.4课题学习课题学习 好平整的地板好平整的地板! !这这是怎么铺成的是怎么铺成的? ?怎么一怎么一点空隙也没有?点空隙也没有? 我们经常能见到各种建筑我们经常能见到各种建筑物的地板,观察地板,就能发物的地板,观察地板,就能发现地板常用各种多边形地砖铺现地板常用各种多边形地砖铺砌成既没有缝隙又不重叠的美砌成既没有缝隙又不重叠的美丽图案。丽图案。铺地板的学问铺地板的学问平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做平面镶嵌.看一看看一看砖与砖严丝合缝砖与砖严丝合缝, ,不留空隙、不留空隙、不重叠不重叠,并并且且把地面全部覆盖把地面全部覆盖如果让你设计几种地板图案,你会
2、怎如果让你设计几种地板图案,你会怎么做?么做? 问题问题1 1:如果限于用一种正多边形镶嵌,:如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面?哪几种正多边形能镶嵌成一个平面?问题问题2 2 :如果允许用几种正多边形组:如果允许用几种正多边形组合起来镶嵌(讨论顶点与顶点重合的情合起来镶嵌(讨论顶点与顶点重合的情况),由哪几种正多边形组合起来能镶嵌况),由哪几种正多边形组合起来能镶嵌成一个平面?成一个平面? 探究探究1 1:仅用一种正多边形镶嵌,仅用一种正多边形镶嵌,哪些正多边形能单独镶嵌成一个哪些正多边形能单独镶嵌成一个平面图案?平面图案?正方形正三角形正六边形做一做:做一做:啊!拼
3、不了啦,为什么呢?你能说说道理吗?1231+2+3=?1+2+3=?用边长相同的正五边形能否镶嵌?用边长相同的正五边形能否镶嵌?要用正多边形镶嵌成一个平面要用正多边形镶嵌成一个平面, , 关键关键是:这种正多边形内角的度数能整是:这种正多边形内角的度数能整除除360360。镶嵌满足的条件镶嵌满足的条件:能铺满地面的多边形能铺满地面的多边形,围绕某围绕某一顶点的一顶点的内角和为(内角和为( )思考:什么样的正多边形思考:什么样的正多边形 能够进行镶嵌能够进行镶嵌? ? 360 理一理理一理6 6 6060 0 0 9090 0 0 108108 0 0 120120 0 04 43 33 3能拼
4、好能拼好能拼好能拼好不能拼好不能拼好有缺口有缺口能拼好能拼好60 6=360 0 0 0 090 4=360 0 0 0 0108 3360 0 0 0 0120 3=360 0 0 0 0实实 验验 结结 果果正正n n边形边形拼图拼图每个内角度数每个内角度数 多边形个数多边形个数结果结果 n = 3n = 3 n = 4n = 4 n =5n =5 n = 6n = 6探究探究2 2:用边长相等的两种正多边形镶嵌,用边长相等的两种正多边形镶嵌,哪两种正多边形能镶嵌成一个平面图案?哪两种正多边形能镶嵌成一个平面图案?正三角形正方形正六边形问题问题1:如果限于用一种正多边形镶嵌,哪几:如果限于
5、用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面?种正多边形能镶嵌成一个平面?答答:正三角形正三角形、正方形正方形、正六边形正六边形等等理由:这些正多边形的内角能组成理由:这些正多边形的内角能组成360的角的角60603+903+902=3602=360讨讨 论论正三角形和正方形正三角形和正方形正三角形和正六边形正三角形和正六边形604 + 120=360602+1202=360想一想想一想正方形和正八边正方形和正八边形能否镶嵌形能否镶嵌?正三角形和正十正三角形和正十二边形能否镶嵌二边形能否镶嵌?1351359015015060正八边形和正方形正八边形和正方形正十二边形和正三角形正十二边形和
6、正三角形正方形和正六边形正方形和正六边形 用两种正多边用两种正多边形进行镶嵌应满足形进行镶嵌应满足什么条件什么条件 ? 当围绕一点拼在一起的两种正多边形的内角加在当围绕一点拼在一起的两种正多边形的内角加在一起恰好组成一起恰好组成一个周角一个周角时,这两种正多边形就能镶嵌时,这两种正多边形就能镶嵌.规律:规律: 用三种或多种用三种或多种正多边形进行镶嵌正多边形进行镶嵌应满足什么条件应满足什么条件 ? 当围绕一点拼在一起的几种正多边形的内角加在当围绕一点拼在一起的几种正多边形的内角加在一起恰好组成一起恰好组成一个周角一个周角时,这几种正多边形就能镶嵌时,这几种正多边形就能镶嵌.正十二边形与正三正十
7、二边形与正三角形的平面镶嵌角形的平面镶嵌正十二边形与正方形、正十二边形与正方形、正六边形的平面镶嵌正六边形的平面镶嵌正八边形与正方正八边形与正方形的平面镶嵌形的平面镶嵌探究探究3 3: 用几个形状、大小相同的任意三用几个形状、大小相同的任意三角形能镶嵌成一个平面图案吗?四角形能镶嵌成一个平面图案吗?四边形呢?边形呢?1 13 32 21 14 43 32 21 13 32 21 13 32 21 13 32 21 13 32 21 13 32 21 13 32 21 13 32 21 13 32 2 1+2+3=180 1+2+3=1802(1+2+3)=3602(1+2+3)=360任意三角形能镶嵌成平面图案。任意三角形能镶嵌成平面图案。1 13 32 2因为因为1+2+3+4=3601+2+3+4=3601 14 43 32 21 14 43 32 21 14 43 32 21 14 43 32 21 14 43 32 2所以所以任意四边形能镶嵌成平面图案。任意四边形能镶嵌成平面图案。多边形镶嵌的条件多边形镶嵌的条件: : 拼接在同一个顶点处的各个多边拼接在同一个顶点处的各个多边形的内角之和等于形的内角之和等于36036
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/T 1232-2020城市森林碳汇调查及数据采集技术规范
- 2024年无纺布及其制品资金申请报告代可行性研究报告
- 金属制品在地铁消防设施中的选材与应用考核试卷
- 故事代替道理《富商的“新”金牙》
- 2025年Web考试重要事项试题及答案解析
- 绵阳市平武县2025年八年级《语文》上学期期末试题与参考答案
- 高价值货物运输保险补充协议
- 2025年中国闭环电流传感器行业市场规模调研及投资前景研究分析报告
- 电子烟零售终端合规经营及品牌授权合作协议
- 拼多多平台带货分成比例调整补充协议
- 版式设计课件3,网格系统全攻略
- 船舶防台风安全安全知识
- 汽机发电量计算
- GB∕T 1457-2022 夹层结构滚筒剥离强度试验方法
- 康复治疗技术(康复养老服务)专业群建设方案
- 静音房声学设计方案
- 第五章结型场效应晶体管
- 丽声北极星自然拼读绘本第一级Uncle Vic‘s Wagon 课件
- 2019幼儿园家委会PPT
- T∕CAAA 002-2018 燕麦 干草质量分级
- 单人徒手心肺复苏术PPT课件
评论
0/150
提交评论