




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Mechatronic Control SystemsSpring 2013Dr. Bin YaoFINAL EXAM April 30, 2013ProblemPoint ValuePoints Gained120220340420Total100INSTRUCTIONS: 1. This is a Closed book exam. You are allowed one help sheet of hand-written summary.2. Your exams must be stapled.3. Circle your final answers.4. Be neat and c
2、lear. PROBLEM 1 (20Points)Consider the following feedback system: Y(s)-ControllerPlantwhere.You are required to design a controller to meet the following performance specifications: (P1). Zero steady-state error for ramp type reference input and constant disturbance (P2). The resulting closed-loop s
3、ystem should not have excessive transient responses for step reference input , i.e., your design should avoid either excessive large overshoot or large undershoot in the step responses. To solve this problem, you are required to follow the following procedure:a) Determine the correct controller stru
4、cture that is needed to meet the performance requirement P1. To receive full credit, you need to justify your answer as well.b) Determine the suitable desired pole locations of the closed-loop system so that the performance requirement P2 can be satisfied. Again, to receive full credit, you need to
5、justify your answer as well.c) Determine the unknown controller parameters to meet the above performance requirements. Solutions:由上面两条定理可以得到结论:1、a). As the plant has an integrator, to satisfy (P1), the controller only needs one integrator, i.e., (1)With the controller (1), the closed-loop output is
6、given by (2)Thus, for ramp type reference input (i.e., ) and constant disturbance (i.e., ), the system output tracking error is (3)So as long as the CL system is stable (i.e., the denominator in (3) has all roots in LHP), the condition for applying FVT is satisfied. By FVT, you can easily show that
7、the steady-state error in (3) is zero.PROBLEM 1 (conts)b). As the plant has an unstable pole at 1, to avoid excessive overshoot due to this unstable pole, the CL bandwidth should be higher than the break frequency of this unstable pole, which can be roughly met by imposing the following conditions o
8、n dominant CL poles:(4)As the plant has a stable zero at -3 which tends to increase the overshoot significantly when it is slower comparing to the CL bandwidth, to avoid excessive overshoot, the following condition on dominant CL poles should be imposed normally:(5)Thus we can place the dominant CL
9、poles around 2 to make a compromise between the conflicting requirements of (4) and (5). Note that as this zero is stable, you can also cancel this zero in the controller design (by placing one CL pole at -3) to remove its effect on the CL response with respect to the reference input as well. In tha
10、t case, its effect still appears in the CLTF from the disturbance input to the output.c). With a second-order controller of the form (1), (6)we have four controller parameters free to choose and the resulting CL system has four poles. Thus we can arbitrarily place all four CL poles with the controll
11、er form of (6). For simplicity, let all CL poles at -2, which leads to the following desired CL characteristic polynomial (CLCP): (7)From (2), the actual CLCP with the controller (6) is (8)Comparing (7) and (8), we obtain (9)Thus, (10)PROBLEM 2 (20 Points)Consider the following two-DOF feedback syst
12、em: SensorReference ValueNoises-ControllerPlantwhere and the system has the following characteristics: (C1) The input disturbance has significant energy in the frequency band 0, 1 rad/s.(C2) The measurement noise has significant energy in the frequency band 5, 100rad/s.(C3) The reference signal has
13、significant energy in the frequency band 0, 10 rad/s.You are required to synthesize proper controller transfer functions and to meet the following specific design goals while taking into account the above system characteristics: (P1) Zero steady-state errors for ramp type output disturbances (P2) Th
14、e response of the closed-loop system for step reference input has no oscillations.(P3) The closed-loop system should follow the reference signal well in the frequency band specified in (C3). To solve this problem, you may want to follow the following procedure:a) Determine the correct structure of f
15、eedback controller that is needed to meet the steady-state performance requirement P1. b) Determine the suitable desired pole locations of the closed-loop system that take into account the system characteristics (C1)-(C3). To receive full credit, you need to justify your answer as well.c) Determine
16、the parameters of the feedback controller to place the closed-loop poles at the desired locations.d) Determine a suitable filter transfer function so that (P2) and (P3) are satisfied. Solutions:a). As the plant has an integrator, to satisfy (P1), the controller only needs one integrator, i.e., (1)b)
17、. (C1) demands that the CL bandwidth should be at least higher than 1 rad/s to have certain attenuation to the input disturbance in the frequency band of 0, 1 rad/s. (C2) implies that the CL bandwidth should not be set too high to amplify the effect of noise in the frequency band of 5, 100 rad/s. Th
18、us a good compromise for the CL bandwidth to meet both requirements should be around 2 to 3 rad/s. So assume that we would like to place dominant CL poles at -3 in the following. c). With a first-order controller of the form (C1) (2)there will be two controller parameters free to choose and the resu
19、lting CL system will be of order 2. Thus we can arbitrarily place the two CL poles. With , the desired CLCP is(3)The actual CLCP with the controller (2) is (4)Comparing (3) and (4), we obtain (5)d). With the controller (5), the CLTF from to is (6)Thus, to be able to track reference signal in the fre
20、quency band of 0, 10 rad/s, a feedforward TF is needed so that the resulting CLTF from to has a bandwidth far more than 10 rad/s. As such, we needs to cancel the slow CL poles at -3 in (6). Furthermore, to avoid overshoot, the stable zero in (6) should be cancelled as well. With all these in mind, w
21、e can choose (7)where is the small time constant of the additional filter needed to make proper.Problem 3 (40 Points)Consider the control of an inertia load such as the rigid ECP emulator introduced in the lectures and the homework. In the presence of disturbance forces such as the Coulomb friction
22、force, the inertia load dynamics can be described by: where represents the disturbance force. Assume that the disturbance force is constant but unknown (i.e., =unknown constant), and only the output is measured. a) Design a minimum-order observer to estimate the unmeasured state (i.e., the velocity)
23、 and the unknown constant disturbance force. The observer gain should be chosen to place all observer poles at -5.b) Consider the following output feedback control law with disturbance estimate:where and represent the plant state and disturbance estimates from part a), and represents the filtered re
24、ference input. Determine the feedback gain so that all un-cancelled poles of the closed-loop transfer function from the filtered reference input to the output, i.e., , are at -1.c) Draw the equivalent block diagram of the closed-loop system with the above controller and estimator using transfer func
25、tions. To receive full credit, you need to obtain the explicit expressions of all relevant transfer functions.d) Obtain the closed-loop transfer function from the filter reference input to the output, and verify that all its un-cancelled poles are at -1 as required.e) Obtain the closed-loop transfer
26、 function from the disturbance input to the output, . Use this transfer function to show that constant disturbances will not cause any steady-state error in the output as expected. Solutions:a) . 降阶观测器极点配置的方法For constant disturbance , the augmented system model is (1)which is in the standard form fo
27、r designing minimum-order observer with and (2)The observer gain matrix can then be determined by placing the eigenvalues of (3)at -5, i.e., (4)(5)The minimum-order observer is thus given by(6)b). 状态反馈极点配置的求法 :根据独立性原则,状态观测器和状态反馈互不影响,也就是K和L互不影响The closed-loop poles due to the state feedback gain are
28、determined by (7)Thus, to have the un-cancelled CL poles at -1, (8)c). With the minimum-order observer (6), the control law is given by (9)Substituting (9) into (6), (10)Thus,(11)and the control law (9) in s-domain is given by (12)The equivalent block diagram of the above CL system can then be drawn
29、 below:图中从u+d到Y的输出是由原系统中的A、B、C矩阵求出来的!orFig.1d). From Fig.1, the CLTF from to is (13)which has all uncancelled poles at -1.e). From Fig.1, the CLTF from to is (14)which has a in the numerator. As such, , indicating that the constant disturbances will not cause steady-state error.Problem 4 (20 Points)
30、Consider the same second-order system as in Problem 3 but with an input disturbance, i.e.,where represents the disturbance force. Assume that the disturbance force is constant but unknown (i.e., =unknown constant), and only the output is measured. Design an output feedback controller using the techn
31、ique of state-estimator with disturbance estimation and compensation (i.e., ) to achieve the following performance requirement:a) Stable closed-loop system.b) Zero state-steady error for any constant input disturbance .c) All the un-cancelled poles of the closed-loop transfer function from the filte
32、red reference input to the output, i.e., , are at -2.d) All other assignable closed-loop poles should be placed at -10. Solutions 1:As shown in Problem 3, the given system is not observable but detectable, and is not controllable but stabilizable. By introducing the coordinate transformation of (a1)
33、The system matrices in the new coordinate are (a2)which isolates the uncontrollable and unobservable mode represented by the coordinate . Though this mode cannot be moved with any state feedback and observable design, it is stable and does not contribute to the overall TF from the input to the outpu
34、t. Thus we can ignore this mode and only consider the controllable and the observable mode in synthesizing the output feedback controller. Thus the given system is reduced to(a3)For constant disturbance , the augmented system model is (a4)A full-order observer can then used to estimate the augmented
35、 states in (a4). The observer gain matrix should be chosen such that the eigenvalues of (a5)are at -10, -10, i.e., (a6)(a7)With the above observer gain, a full-order observer can be constructed as (a8)To have the CL poles by the state feedback at -2, from (a3), the state feedback gain for should be chosen as (忽略Z1,因为不可观) (a9)With the observer (a8) and the above gain in (a9), the following stabilizing output feedback control law can be used: (a10)Solutions 2:For constant disturbance , the augmented system model is (1)As shown in Problem 3, the above system is not observable but detectabl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025房产买卖合同书的样本版
- 2025中外合资企业租赁合同书样式
- 甘肃集装箱冷库施工方案
- 2025项目管理咨询服务合同示例
- 2025年新余市属事业单位考试试卷
- 易考试会计从业注册机及答案解析
- 护理学基础题库环境及答案解析
- 南海区无尘车间施工方案
- 桥面防腐木施工方案设计
- 低温食品冷库施工方案
- 设备预防维护培训课件
- (2025秋新版)人教版九年级物理上册全册教案
- 2024csco前列腺癌诊疗指南
- 楼宇入驻管理办法
- 结肠息肉患者健康教育
- 核电运营数字化转型探索-中核集团 核电运行研究(上海)有限公司 2025
- Unit2RainorShine词汇与语法特训鲁教版七年级英语上册
- 学堂在线 如何写好科研论文 章节测试答案
- 旅馆顾客财物管理制度
- 交通设施韧性提升-洞察及研究
- CJ/T 340-2016绿化种植土壤
评论
0/150
提交评论