水力裂缝层内爆燃油井产能评价与分析_第1页
水力裂缝层内爆燃油井产能评价与分析_第2页
水力裂缝层内爆燃油井产能评价与分析_第3页
水力裂缝层内爆燃油井产能评价与分析_第4页
水力裂缝层内爆燃油井产能评价与分析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、!72!开采工艺钻 采 工 艺DRILLING&PRODUCTIONTECHNOLOGY2007年5月May2007水力裂缝层内爆燃油井产能评价与分析孟红霞,郭 清,陈德春,黄新春2(1中国石油大学石油工程学院!华东2西南石油大学)孟红霞等.水力裂缝层内爆燃油井产能评价与分析.钻采工艺,2007,30(2):72-75摘 要:根据温度场、电压场和渗流压力场的相似性,利用ANSYS热稳态模型和建立的电模拟实验装置,研究水力裂缝和爆燃裂缝参数对油藏渗流场和油井产能的影响,并与水力裂缝层内爆燃油井产能数学模型的计算结果进行了对比。研究结果表明,水力裂缝和爆燃裂缝的存在,改善了流体在地层中的渗

2、流状况,有利于油井产能的提高;实验测试结果与数学模型预测结果的平均相对误差为4.06%;ANSYS数值模拟计算结果与数学模型预测结果的平均相对偏差为2.33%;为水力裂缝层内爆燃技术的水力裂缝和爆燃裂缝参数设计提供依据。关键词:油井产能;水力裂缝;爆燃裂缝;ANSYS分析;电模拟实验中图分类号:TE 文献标识码:A 文章编号:1006-768X(2007)03-0072-04基于水力裂缝层内爆燃技术提高低渗透油田采收率和油井产量的基本设想,利用油藏渗流理论和节点系统分析方法,建立了水力裂缝层内爆燃压裂油井产能计算模型及其求解方法,证明了水力裂缝层内爆燃压裂技术的增产作用。本文根据温度场和电压场

3、与渗流压力场的相似性5241响,并与水力裂缝层内爆燃油井产能数学模型的计算结果进行了对比,以评价水力裂缝层内爆燃油井产能计算模型的精度,为该技术的应用参数设计提供依据。,利用AN一、相似关系根据油藏稳态渗流压力场、稳恒电压场、稳态温度场的性质相似性,得到表1中的相似关系。SYS二维热稳态模型和电模拟实验,研究水力裂缝和爆燃裂缝参数对油藏渗流场和油井产能的影表1 渗流压力场、稳恒电压场和稳态温度场的相似关系表渗流压力场拉氏方程 2P=0达西定律渗流速度流体流量流度失径稳恒电压场拉普拉斯方程 2U=0欧姆定律电流密度电流强度电导率矢径稳态温度场拉普拉斯方程 2T=0傅立叶定律热流密度热流量导热系数

4、矢径3=-vK Pi=-i1 Uq=-kqQkTQK/ R(X,Y,Z)I1/!r(x,y,z)r(x#,y#,z#)表1中:P实际油藏压力,Pa;U模型电压,V;T热稳态模型温度,%;K被模拟油藏的渗透率,m; 被模拟油藏的流体粘度,Pa!s;K/ 被模拟油藏的流体流度,m!(Pa!s);1/!实验流体电导率,S/m;kANSYS热稳态模型导热系数,W/(m!%);v实际油藏流体渗流速度,m/s;i模型电流密度,A/m;q热流密度,W/m;Q实收稿日期:2006-05-11;修回日期:2006-11-06222-12际油藏流体流量,m/s;I模型电流强度,A;Q热流量,W;X、Y、Z分别为实

5、际油藏几何参数,m;x、y、z分别为电模拟模型几何参数,m;x#、y#、z#分别为ANSYS平板模型几何参数,m。二、计算和实验模拟参数水力裂缝层内爆燃油井产能计算模型的模拟油基金项目:国家 211工程 重点建设实验装置项目,中国石油化工股份有限公司资助项目,编号:P03051。作者简介:孟红霞(1968-),女,讲师,1991年毕业于中国石油大学采油工程专业,现在中国石油大学从事油气田开发工程理论与技术的:(),电话:,Ei:lChdpu.第30卷 第3期Vo.l30No.3钻 采 工 艺DRILLING&PRODUCTIONTECHNOLOGY!73!井参数、电模拟模型参数以及AN

6、SYS热稳态模型的相关参数见表2。表2 被模拟油井产能计算参数、电模拟模型参数和ANSYS数值模拟计算参数表被模拟油井产能计算参数泄油半径(m)井径(m)油层厚度(m)750.21020水力裂缝半缝长(m)40604爆燃裂缝缝长(m)渗透率( m2)粘度(Pa!s)流度( m/Pa!s)油藏外边界压力(MPa)电模拟模型参数泄油半径(m)井径(m)油层厚度(m)0.750.0020.10.2水力裂缝半缝长(m)4爆燃裂缝缝长(m)0.070.10实验流体电导率(S/m)模型外边界电压(V)0.01783ANSYS数值模拟计算参数泄油半径(m)井径(m)0.750.0020.2

7、水力裂缝半缝长(m)4爆燃裂缝缝长(m)0.070.10导热系数,W/(m!%)模型外边界温度(%)0.017837100.0890.051.7830三、渗流场分析利用等压线图、等温线图和流线图分析油藏渗流场。考虑变化规律的类似性,以其中一组结果为例进行分析。图1、图2分别为水力裂缝半缝长200mm,爆燃裂缝缝长100mm,爆燃缝分别为0、4模型的实验等压线图和等温线图;图3为其流线图。水力裂缝处等温线和等压线形状逐渐接近圆形边界的形状,流体径向流动;越靠近水力裂缝,等温线和等压线的形状受裂缝的影响越大;到水力裂缝附近处,等温线和等压线几乎平行于水力裂缝方向,流体以线性流方式

8、流入水力裂缝。(a)无爆燃裂缝(a)无爆燃裂缝(b)4条爆燃裂缝图2 水力裂缝层内爆燃油井ANSYS数值模拟等温线图(b)4条爆燃裂缝(2)对于水力裂缝前端有爆燃裂缝的情况,在爆燃裂缝附近,等温线和等压线发生了明显弯曲,越接近爆燃缝线性流越明显。(3)流线图也证明了水力裂缝和爆燃裂缝对流图1 水力裂缝层内爆燃油井电模拟实验等压线图从图1图3中可以看出:(,!74!钻 采 工 艺DRILLING&PRODUCTIONTECHNOLOGY2007年5月May2007的前端有汇流的存在。表3 模型产能实验结果、ANSYS数值模拟结果与计算模型预测结果对比表模型井特征参数水力裂缝半缝长200m

9、m水力裂缝半缝长200mm,爆燃裂缝缝长40mm裂缝产能电流热流相对相对条数比比量比(%)(%)0234234234023423423402342342342.332.212.292.352.282.332.382.332.353.473.283.413.553.313.503.633.423.553.703.473.643.873.673.723.923.783.773.533.463.793.863.784.033.843.794.064.013.814.083.973.824.153.993.984.184.204.

10、014.244.364.024.264.954.774.824.914.865.034.964.895.105.054.9085.225.405.015.265.265.035.275.235.075.345.285.135.385.505.165.411.795.152.992.105.476.765.772.191.941.477.723.821.031.522.964.887.724.623.132.976.510.451.720.851.261.731.412.21.623.883.837.3

11、74.45.731.753.530.491.894.760.952.292.632.442.821.3902.591.64(a)无爆燃裂缝(b)4条爆燃裂缝图3 水力裂缝层内爆燃油井流线图所以,水力裂缝和爆燃裂缝存在有利于提高油井产能。同时流线图也为水力裂缝层内爆燃油井产能计算模型1水力裂缝半缝长200mm,爆燃裂缝缝长70mm水力裂缝半缝长200mm,爆燃裂缝缝长100mm水力裂缝半缝长400mm水力裂缝半缝长400mm,爆燃裂缝缝长40mm水力裂缝半缝长400mm,爆燃裂缝缝长70mm水力裂缝半缝长400mm,爆燃裂缝缝长100mm水力裂缝半缝长600mm水力裂缝半缝

12、长600mm,爆燃裂缝缝长40mm水力裂缝半缝长600mm,爆燃裂缝缝长70mm水力裂缝半缝长600mm,爆燃裂缝缝长100mm渗流区划分提供了依据。四、油井产能结果分析电模拟实验、ANSYS二维热稳态模型分别采用电流比和热流量比反映模拟油井的增产效果,并与水力裂缝层内爆燃油井产能计算模型的计算结果(用产能比表示)进行对比,以分析产能计算模型的精度,并验证水力裂缝层内爆燃技术的增产效果。表3为电模拟实验结果、ANSYS数值模拟结果与产能计算模型预测结果对比表,表中电流比为多次实验的平均值。J1JR=J2IR=I1I2(1)(2)(3)(4)(5)Q1QR=Q2I=|JR-IR|&100

13、%JRQ|JR-QR|=&100%JR式中:JR产能比,无因次;J1产能计算模型预测的模拟井产液指数,m/d!MPa;J2同样条件下产能计算模型预测的直井模型产液指数,m/d!MPa;IR电流比,无因次;I1电模拟实验井在单位电压差下的电流,A/V;I2同样条件下直井模型在单位电压差下的电流,A/V;QR热流量比,无因次;Q1单位温差下的热流量,W/%;Q2同样条件下直井模型单位温差下的热流量,W/%; I电流比与产能比相对误差,%; Q从表3看出,电模拟实验结果与计算模型预测结果的相对误差在0.21%7.72%内,平均相对误差为4.06%,ANSYS数值模拟计算结果与计算模型7.,热

14、流量比与产能比相第30卷 第3期Vo.l30No.3钻 采 工 艺DRILLING&PRODUCTIONTECHNOLOGY!75!误差为2.33%,证明了产能计算模型的精度;同时,存在爆燃裂缝的水力压裂油井产能比有明显增加。通过研究,进一步证明水力裂缝层内爆燃技术提高油井产量的可行性,对水力裂缝层内爆燃技术水力裂缝参数和爆燃裂缝参数设计具有指导作用。参数设计提供依据。参考文献1 陈德春,孟红霞,张琪,等.水力裂缝层内爆燃压裂油井产能计算模型J.中国石油大学学报,2005,29(6):69-73.2 徐挺.相似理论与模型试验M.北京:中国农业机械出版社,1982:1-78.3 杨金海,

15、郑天璞.油气藏渗流的固体介质电模拟技术实验研究J.石油勘探与开发,1994,21(4):70-74.4 冯跃平,潘迎德,唐愉拉,等.电模拟平面径向流理论在实际运用中几个问题的探讨J.西南石油学院学报,1990,12(4):49-59.5 宋勇,艾宴清,等.精通ANSYS7.0有限元分析M.北京:清华大学出版社,2004:285-332.(编辑:黄晓川)五、结论(1)水力裂缝和爆燃裂缝的存在,改善了地层流体的渗流状况,有利于油井产能的提高。(2)电模拟实验模型产能的测试结果与计算模型产能预测结果的相对误差在0.21%7.72%范围内,平均相对误差为4.06%;ANSYS数值模拟产能计算结果与计算

16、模型产能预测结果的相对误差在0%7.37%范围内,平均相对误差为2.33%,检验了产能计算模型的精度。(3)研究结果为水力裂缝层内爆燃技术的裂缝(上接第66页)力符合率89.45%),新钻井中没有一口井出现井塌、报废进尺复杂事故。表1 推荐该井钻井液密度的使用值井深(m)86077210421135预测坍塌压力当量钻井液密度(g/cm3)1 341 211 181 23预测钻井液密度(g/cm3)1 301 301 301 30#=1-KrKb式中:Kr岩石的体积弹性模量,GPa;Kb岩石骨架的体积弹性模量,GPa。根据弹性力学理论,体积弹性模量K与弹性模量E和泊松比 的关系:K=!E1-2三

17、、现场应用收集了新站油田大426区块已钻井钻探成果、构造位置、岩性及钻井复杂显示等基础资料,1999年钻开发井时,由于新站油田黑帝庙油层坍塌压力较高,设计钻井液密度时,没考虑坍塌压力,使用钻井液密度在1.25g/cm,从而导致井塌事故,增加了钻井费用,此次我们建立了相应井的测井数据库,并通过压力预测软件分别预测了5口井的坍塌压力当量密度,绘制了相应的地层坍塌压力剖面(见图1),预测地层坍塌压力当量钻井液密度在1.30g/cm33四、结论(1)通过该计算模型所得出的地层坍塌压力对新站油田的钻井设计、钻井施工具有指导意义。并且将计算结果与已钻井的井径扩大率进行对比分析,表明该计算模型能够满足新站油

18、田实际钻井需求。(2)在地层坍塌压力的计算中,结合测井资料、钻井液性能等多项影响因素,连续地计算出不同层位、不同井深的坍塌压力。参考文献1 徐同台,崔茂荣,等.钻井工程井壁稳定新技术M.石油工业出版社.2 楼一珊,张学良.地层坍塌压力预测技术地钟山市地区的应用J.石油钻探技术,1999,27(3).3 周广陈,王成立,程远方.井壁稳定性技术在冀东油田的应用J.石油钻探技术,1996,24(3):4-6.4 丰全会,等.确定地层坍塌压力的方法研究及其在盐城地区的应用J.小型油气藏,1999,4(2):45-49.(:左右,为了便于实际施工,并考虑钻井液性能、井身结构及抽汲压力等因素,同时保证坍塌

19、压力附合率在85%上,推荐该井钻井液密度的使用值(表1)。 根据设计钻井液密度进行施工,现场应用情况为当钻井液密度大于地层坍塌压力当量钻井液密度时,地层就稳定,井径扩大率就小,反之,井径扩大率就大,井径不规则,该井使用 215.9钻头,油层封7.!6!DRILLING&PRODUCTIONTECHNOLOGY Vo.l30No.3May20072007:57-59Abstract:Amodelisestablishedtocalculatethesteamquali tydistributionalongthewellboreduringsteaminjectionofthermalr

20、ecoverywells,basedonrelatedthermodynamicsandhydrome chanicsprinciples.Basedontheenergybalanceprinciple,there lationshipbetweensteamparametersandpressurelossandwellboreheattransmissiosnwasanalyzed.Acomputingprogramisde velopedtoverifythearithmeticoftheprogramandthevariationlawofsteamparameters.Basedo

21、ntheactualdataofthermalre coverywells,theverificationresultsshowthatthearithmeticoftheprogramandthevariationlawofsteamparametersareidentica.lKeywords:thermalrecoverywel,lsteamparametervaria tion,?energybalanceZHANGYonggu,ibornin1965,isaprofessoranddoctoralstudentofConstructionalEngineeringandMechani

22、csInstitute,YanshanUniversity.Add:ConstructionalEngineeringandMe chanicsInstitute,YanshanUniversity,QinhuangdaoCity066004,HebeiProvince,P.R.China Te:l(0335)8078049 E-mai:lzyghRESEARCHANDAPPLICATIONOFSUCKERRODPUMPOILRECOVERYTECHNOLOGYINDEEPZONEINNONVERTIVALWELLS1213LIUZhimin,DINGHong,MAYuhua,ZHANGYaz

23、hen4andCHENZhigang(1.TuhaOilfieldEngineeringTechnologyCenter;2.TuhaOilfieldEngineeringResearchInstitute;3.TuhaOilfieldExplorationResearchInstitute;4.TuhaOilfieldTulufanOilRecoveryFactory),DPT30(3):2007:60-62Abstract:Withthedevelopmentoftheoilfield,deviatedwells,sidetrackingwellsandhorizontalwellshav

24、emoreandmoreiportantfunction,whereastheparticularityofcasingprogrammmelmiitedthelandingdepthofsuckerrodpump,andaffectedthepro ducibilityofoilwellseriously.Besides,theeccentricwearofpum pingrodandpipehasbecomethemaincontradictionforthecostofpumpingrodandpipeandoutputofnon-vertivalwells.Onthebasisofan

25、alyzingtheinfluentialfactoronlandingdepthandre searchingeccentricwearpreventionmeasures,somematchingtech nologies,includingthetechniquesofantiwear,centeringdevice,optmiizingassembleofrodandpipeandstabilizationcontroletc.,wereusedtoincreasestheproductionrateofnonvertivalwells,andactualizethedeepoilre

26、coveryofsuckerrodpump.Throughfieldapplication,thegoalsofreducingeccentricwearandprolongingpumpdetectionperiodwereachieved.Keywords:non-vertivalwells,suckerrodpump,eccentricwearprevention,deepoilrecovery,matchingtechnologyLIUZhimin(engineer),graduatedfromReservoirEngineer ingDepartmentofJianghanPetro

27、leumInstitutein1996,isengagedintheresearchonoilrecoverytechniqueinEngineeringTechnolo gyCenterofTuhaOilfieldBranchCompany,PetroChina.Link man:DINGHongAdd:TuhaDrillingandProductionTechnologyResearchInstitute,Shanshan,Xinjiang838202,P.R.China Te:E-mai:lgxxmai.lcpthy.tcomANALYSISANDFORECA

28、STOFTHEWATER-CUTINCREASINGAFTERACIDIZINGINWELLWENCHANG13-1-A9123YUANHui,SONGGuangli,FANYongzhaoandXUZhi 4jun(1.CNOOCZhanjiangLmiitedCompany;2.CNOOCTian jingLmiitedCompany;3.DevelopmentDepartmen,tSouthwestOil/GasFieldCo.;4.CNPCYumenOilfieldOperatingCompa ny),DPT30(3),2007:63-64Abstract:Afteracidizing

29、,thewatercutofwellWenchang13-1-A9isupto54%.Accordingtoanalysingthegeologicandreservoirdynamicdata,itisshownthattherearethreereasonswhichcausedtherisingofthewater-cu.tThefirstoneisquickrisingoftheOil-waterinterface.Thesecondreasonistheperme abilityisincreasedwhichmiprovedtheconnectivitybetweentheprod

30、uctionlayerandaquiferandacceleratedtheonrushofedgewater.Thethirdreasonistheincreaseoffluidproductivityindex,whichcausethepressuredecreasingandbottomwaterconing.Be sideoftha,tthewellislocatedinthetransitionalzoneofoil-wa ter.Basedontheanalyzingthereasons,theincreaseruleofwater-cutin13-1-A9isforecaste

31、dbyusingtheLogisticMode,lthei2008.Keywords:acidizing,watercutincreasing,reasons,logisticmode,lforecastYUANHui(reservoirengineer),bornin1977,graduatedfromChinaUniversityofPetroleumin2004,andgainedmastersdegree.NowworkinCNOOCZhanjiangLmiitedCompanyo,fisengagedinthereservoirmanagemen.tAdd:CNOOCZhanjian

32、gLmiitedCompany,P.O.Box22,PotouDistric,tZhanjiangCity524057,GuangdongProvince,P.R.China Te:ALCULATIONOFFORMATIONCAVINGPRES SUREANDITSAPPLICATIONINXINZHANAREAXUEQingwenandWUGuangmin(DaqingOilfieldProduc tionEngineeringResearchInstitute),DPT30(3),2007:65-66Abstract:Geologicalcircumstance

33、inXinzhanareaiscom plicatedandboreholecollapsesoccureasilyduringdrillingopera tionsthatresultinboreholeobsolescence.Andthedrillingopera tionsinXinzhanareahavebeeninfluencedbyunstableboreholewalls,andeconomiclossisheavy.Therefore,thekeyprobleminthisareaistoobtainreasonabledrillingfluiddensitybymeanso

34、ffiguringoutrightformationcavingpressure.Inthispaper,onthebasisofrockmechanics,amodeloncalculatingformationcavingpressureisestablished,andtherelationbetweenparametersinthemodelandloggingdataisgiven.Then,theformationcavingpres suresinthisareaarecalculatedcontinuouslybyusingtheconven tionalloggingdata

35、,asaresul,tdrillingoperationsareeffectivelyinstructedandgoodresultsareobtained.Keywords:formationcavingpressure,calculationmode,lXinzhanareaXUEQingwen(female,seniorengineer),bornin1965,graduatedin1988,isengagedinmanagementsandresearchofdrillingtechnology.Add:DaqingOilfieldProductionEngineeringResear

36、chInstitute,DaqingCity163453,HeilongjiangProvince,P.R.China Te:l86-459-5979717 E-mai:lxueqwpet REASONABLEPRODUCTIONSYSTEMDETERMI NATIONFORDIFFERENTWELLTYPESINOFFSHOREOILFIELDSCHENMinfengandJIANGHanqiao(EORResearchCen ter,ChinaUniversityofPetroleum),DPT30(3),2007:67-71Abstract:Theopenhole+screencompl

37、etionmethodwasemployedforsandcontrolforhorizontalwells,horizontalbranchesanddirectionalwellsofPlatformsDandEinBozhong25-1NanOilfield.Forthismethodtoachievesandcontro,lbalanceshouldbeprovidedbetweenfinedrawdownpressuremanagementandproductivitymaxmiization.Firs,tthereasonableproductivitiesofoilwellsof

38、differentcombinationsofcompletionpatternandwelltypewereevaluatedandthemainfactorscontributorytoproductiv ityweredetermined.Second,thecriticalsandproductionpressuredifferencesandsandproductionradiiofdifferenttypesofoilwellswerecomputedbymeansofrockmechanicalmethods.Finally,thereasonabledraw-downpress

39、uresofproducersinthisoilfieldweresuggestedmainlybywayofnumericalsmiulation.Thefindingsareofgreatsignificanceinselectingreasonableproductionsystemsforthisandlikereservoirs.Keywords:welltype,productivity,skinfactor,criticalsandproductionpressuredifference,sandproductionradius,rea sonabledraw-downpress

40、ureCHENMingfeng,bornin1971,receivedhisPh.DdegreefromChinaUniversityofPetroleumin2003.HeisaninstructorattheFacultyofPetroleumEngineering,ChinaUniversityofPetrole um.Hisresearchinterestscoverreservoirengineeringanden hancedoilrecoverymethod.Add:EORResearchCenter,ChinaUniversityofPetroleum,Beijing10224

41、9,P.R.China Te:E-mai:lcmfllp96PRODUCTIVITYEVALUATIONOFEXPLOSIVEFRACTURINGWELLWITHINTHEHYDRAULICFRAC TUREDFORMATION121MENGHongxia,GUOQing,CHENDechunand1XiPVo.l30No.3May2007DRILLING&PRODUCTIONTECHNOLOGY! !7versityofPetroleum(EastChina);2.SouthwestPetroleumUni versity),DPT30(3),2007:7

42、2-75Abstract:Basedonthesmiilarprincipleoftemperaturefield,electricvoltagefieldandpercolationpressurefield,theeffectsofhydraulicfractureparametersandexplodingfracturepa rametersonthepercolationconditionsofthereservoirandwellsproductivityareanalyzedbyusingANSYSstableheatflowmodelandtheestablishedelect

43、ricitysmiulationexpermientalequipmen,twhicharecomparedwiththeproductivityevaluationmodelofthehydraulicfracturewellswithexplodinginfracturefron.tThestudyresultsshowthattheexplodingfracturecanmiprovefluidflowinporousmediaandenhancetheproductivityofhydraulicfracturewells.Theaveragerelativeerroroftheexp

44、ermientaltestingresultstothepredictionresultsofthecalculatedmodelis4.06percentandtheaveragerelativedeviationoftheANSYSresultstothepre dictionresultsofthecalculatedmodeis2.33percen,twhichpro videafoundationtodesignthehydraulicfractureparametersandexplodingfractureparametersoftheexplosivefracturingwit

45、hinthehydraulicallyfracturedformations.Keywords:oilwellproductivity,hydraulicfracture,explo dingfracture,ANSYSanalysis,electricitysmiulationexpermientMENGHongxia(female,lecturer),obtainedBSdegreefromtheChinaUniversityofPetroleumin1991.Nowsheisen gagedintheteachingandresearchonpetroleumexploitationen

46、gi neeringattheCollegeofPetroleumEngineeringintheChinaUni versityofPetroleum(EastChina).Add:PetroleumEngineeringCollege,ChinaUniversityofPetroleum,DongyingCity257061,ShandongProvince,P.R.China Te.E-mai:lChendcFEASIBILITYSTUDYONCYCLICSTEAMSTIMU LATIONINOFFSHOREHEAVYOILRESERVOIRSWITHBOTT

47、OMWATERWUYongbinandLISonglin(ResearchInstituteofPetroleumExplorationandDevelopment),DPT30(3),2007:76-77Abstract:AccordingtothedevelopmentstatusofwellA31inChengBeioffshoreoilfieldandthesmiilarreservoirdevelopmentcasesbothhomeandabroad,theproductionperformanceofwellA31canbemiprovedbycyclicsteamstmiula

48、tion,andthebottomwaterwillbethekeyfactoraffectingtheproductionresultsofwellA31.Numericalsmiulationmethodisusedtoforecastthedevelop mentresultsofcyclicsteamstmiulationinwellA31,andfinally,thefeasibilityofcyclicsteamstmiulationforwellA31inChengBeioilfieldisproposed.Keywords:heavyoilreservoir,steamstmi

49、ulation,bottomwater,numericalsmiulationWUYongbin,bornin1982,graduatedfromChinaUniver sityofPetroleumin2005,isstudyingforhismastersdegree,isengagedintheresearchonviscousoilrecoveryexpermientandnu mericalsmiulationinResearchInstituteofPetroleumExplorationandDevelopmen.tAdd:ResearchInstituteofPetroleum

50、Explora tionandDevelopmen,tP.O.Box910,Beijing100083,P.R.China Te:l(010)62098314 E-mai:lwuyongbinpetrochi STUDYDEVELOPMENTOFLIQUID-LIQUIDHYDROCYCLONES1233LIUHong,GUOQing,FUPanfeng,ZHUYu,WANGRui4,CHENJinhua4andCHENXin4(1.ChongqingUniversityofScienceandTechnology;2.SouthwestPetroleumUniversity;3.Chongq

51、ingGasField,SouthwestOil&GasFieldCo.4.CNPCSi chuanPetroleum),DPT30(3),2007:78-81Abstract:Inthispaper,basedonthestructureandworkingprincipleofliquid-liquidhydrocyclones,thedevelopmentofliq uid-liquidhydrocyclonesissummarizedathomeandabroad.Atthesametmie,theexpermientalsmiulationtechnologiesandfie

52、ldapplicationofliquid-liquidhydrocyclonesareintroducedinde tai.lFinally,manyunderstandingsandsuggestionsonthenumeri calsmiulationtechnologyofliquid-liquidhydrocyclonesareputforwarded.Keywords:gatheringtechnology,hydrocyclone,numericalsmiulation,oil-waterseparation,studydevelopmentLateuatedformSouthw

53、estPetroleumInstitutein2003.Nowheisen gagedinteachingandscientificresearchonstmiulationtechnolo gy.Add:ChongqingUniversityofScienceandTechnology,No.1,ShiyouRoad,YuzhongDistric,tChongqingCity400042,P.R.China Te:l(023)89092540 E-mai:lliubretAGENERALFORMULATIONFORMULTIPHASETRANSMISSIONTHEORYOFTWIN-SCRE

54、WPUMPQUWentao,XULeiandXUJianning(MechanicalEngi neeringInstitute,XianShiyouUniversity),DPT30(3),2007:82-84Abstract:Twin-screwpumpshavethecharactersbothpumpandcompressor.Basedontheprinciplesofliquidincon tractibilityandgaseouscontractibility,twin-screwpumpsmakegas-oilmixingtransmissionrealized,inside

55、leakagereducedandvolumeefficiencyincreased.Inthispaper,thestructuralfeaturesoftwinscrewpumpsandtheoperationalprincipleofmultiphasetechnologyareintroduced,andtheeffectsofparametersoftwin-screwpumps,suchastheflow,pressure,efficiencyandtorque,onsystemperformanceareindicated.Likewise,thebackflowandboost

56、ingprinciple,thesealabilityandscrewprofileoftwinscrewpumpsareanalyzed.Itisprovidedatheoreticalreferencefortheapplicationofmultiphasetransmissionfromsurfacetodown-hole.Keywords:twinscrew,multiphasepump,backflowQUWentao,bornin1970,graduatedfromNorthwesternTechnologyUniversityin1995andobtainedtheMasterDegree,isassociateprofessorandsubdecanalofMechanicalEngineeringIn stituteofXianShiyouUniversity,nowheisengagedinthere searchandteachingofmechanicalsystemdynamicsandmoderndesigntheory.Add:M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论