版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、热 力 学(宏观)统 计 热力 学量子力学(微观)动 力 学物理化学物理化学的学习方法物理化学的学习方法1. 1. 考虑考虑. . 好的习题是如何正确认识基本概念与规律好的习题是如何正确认识基本概念与规律 的范例的范例. .2. 2. 数学语言的理解与使用数学语言的理解与使用 从宏观、整体的角度对体系进行研究,讨论宏观热力学从宏观、整体的角度对体系进行研究,讨论宏观热力学性质的关系性质的关系热力学热力学(Thermodynamics) 研究对象是由大量粒子组成的宏观体系研究对象是由大量粒子组成的宏观体系 不关心粒子的微观行为,只关心他们表现出来的宏观不关心粒子的微观行为,只关心他们表现出来的宏
2、观统计平均行为统计平均行为基本概念基本概念1. 体系体系( system): 被研究的对象被研究的对象 环境环境(surrouding): 与体系相关联的事物与体系相关联的事物严格地说严格地说: 体系体系 + 环境环境 = 宇宙宇宙实际处理:实际处理: 与体系相互作用的部分称为环境。与体系相互作用的部分称为环境。绝热容器绝热容器水水电加热器电加热器电源电源电路电路如图如图:体系和环境可划分为体系和环境可划分为:(1)体系体系:电源电源+容器容器+加热器加热器+水水 环境环境: 其它其它(2)体系体系:容器容器+水水+加热器加热器 环境环境: 电源电源(3)体系体系:水水+加热器加热器 环境环境
3、:容器容器+电源电源(4)体系体系:水水 环境环境:电源电源+容器容器+加热器加热器体体 系系 的的 分分 类类 热力学上因体系与环境间的关系不同而将其分为三种热力学上因体系与环境间的关系不同而将其分为三种不同的类型不同的类型: 开放体系开放体系 (open system): 体系与环境之间既有能量体系与环境之间既有能量 又有物质的交换又有物质的交换 封闭体系封闭体系(closed system): 体系与环境间只有能量的体系与环境间只有能量的 交换没有物质的交换交换没有物质的交换 隔离体系隔离体系(isolated system): 体系与环境间既无能量体系与环境间既无能量 又无物质的交换又
4、无物质的交换 一个绝热容器原处于真空状态,用针在容器上刺一微孔,一个绝热容器原处于真空状态,用针在容器上刺一微孔,使使298.2K、的空气缓缓进入,直至压力达平衡,求此时容、的空气缓缓进入,直至压力达平衡,求此时容器内空气的温度设空气为理想气体。器内空气的温度设空气为理想气体。P0 T0 V1V0解:在绝热箱上刺一小孔后,解:在绝热箱上刺一小孔后,n摩尔空气摩尔空气 进入箱内,在此过程中体系做净功为进入箱内,在此过程中体系做净功为p0V0nRT0, 绝热过程绝热过程Q0 又理想气体任何过程又理想气体任何过程 20()VUC TT020()VnRTCTT20TT 75 27298.2K=417.
5、5K5T 设空气为双原子理想气体设空气为双原子理想气体 2. 状态与状态函数状态与状态函数当体系所有热力学性质具有确定数值时,我们称体系处于一当体系所有热力学性质具有确定数值时,我们称体系处于一定的状态。定的状态。反之,当体系处于某一状态时,体系热力学性质具有确定的数值反之,当体系处于某一状态时,体系热力学性质具有确定的数值1234Z1Z2Z3Z4热力学热力学性质性质Z状态状态热力学性质热力学性质f (状态)状态)需要几个变量描述体系状态:需要几个变量描述体系状态:单组分单相体系单组分单相体系 2个个N组分单相体系组分单相体系 N1个个多组分多相体系多组分多相体系 f =CF2状态函数的性质:
6、状态函数的性质:1. 体系状态确定,状态体系状态确定,状态 函数值便被确定;函数值便被确定;2 体系经历一过程的状体系经历一过程的状态函数改变量,只取态函数改变量,只取决于体系的始末两态。决于体系的始末两态。pVAB如图:体系分别沿途径如图:体系分别沿途径1和途径和途径2 从始态从始态A到达末态到达末态B,体系的任,体系的任一状态函数一状态函数Z,有:,有:Z1Z2=ZB-ZA状态函数口诀:状态函数口诀:殊途同归,值变相等;殊途同归,值变相等;周而复始,值变为零。周而复始,值变为零。1 mol单原子分子理想气体经历如下途径从单原子分子理想气体经历如下途径从300 K ,10po膨胀至膨胀至30
7、0 K ,1po,求各途径的,求各途径的Q,W, DU, DH, DS (1恒温可逆膨胀;恒温可逆膨胀; (2等温反等温反抗恒外压抗恒外压1po膨胀;(膨胀;(3向真空膨胀。向真空膨胀。300K10po300K1po始态始态末态末态123将某纯物质的液体用活塞密封在一个绝热的筒内,其温度为将某纯物质的液体用活塞密封在一个绝热的筒内,其温度为T0,活塞对液体的压力正好是该液体在,活塞对液体的压力正好是该液体在T0时的蒸气压时的蒸气压P0,假设该液体的物态方程为:假设该液体的物态方程为: 将该液体经绝热可逆过程部分气化,使液体温度降到将该液体经绝热可逆过程部分气化,使液体温度降到T,此,此时液体蒸
8、气压为时液体蒸气压为P,试求气化的摩尔分数为,试求气化的摩尔分数为,001mmVVTTPPS0T0 p0 n (l)T p (n-m)l mgT p0 n (l)T p (n-m)l ml广度量广度量: 其数值不仅与体系的性质有关其数值不仅与体系的性质有关,与体系的大小也有关与体系的大小也有关. 如体积如体积V,物质的量物质的量n等等.强度量强度量: 其数值与体系大小无关其数值与体系大小无关. 如温度如温度T,压力压力p等等.一般而言一般而言, 两个广度量的比值是一强度量两个广度量的比值是一强度量,如如:=G/V热力学平衡态热力学平衡态: 1. 力平衡力平衡: 体系处处压力体系处处压力(p)相
9、等相等, 且与环境相等且与环境相等 2. 热平衡热平衡: 体系处处温度体系处处温度(T)相等相等,且与环境相等且与环境相等 3. 相平衡相平衡: 体系内各相间处于平衡相变体系内各相间处于平衡相变() 4. 化学平衡化学平衡: 体系内各化学反应达平衡体系内各化学反应达平衡(K)3. 过程与过程量过程与过程量 A. 热热(heat):体系与环境间因温差的存在而传递的能量称为热。:体系与环境间因温差的存在而传递的能量称为热。 热的符号为热的符号为Q 体系放热为负;体系放热为负; 体系吸热为正。体系吸热为正。 功功(work):以其它形式所传递的能量:以其它形式所传递的能量. 功的符号为功的符号为W,
10、 体系对外做功为正;环境对体系做功为体系对外做功为正;环境对体系做功为负负.过程量特征:(过程量特征:(1伴随过程出现;伴随过程出现; (2其数值与具体过程有关其数值与具体过程有关 功的种类功的种类 广义力广义力 广义位移广义位移 功的表达式功的表达式 机械功机械功 f dl W=fdl 体积功体积功 pdV pdV 电电 功功 EdQ EdQ 表面功表面功 dA dA 化学功化学功 dn dn 在物理化学中,最常见的功体积功,因体系的体积发在物理化学中,最常见的功体积功,因体系的体积发生变化所引起的功。除体积功之外的一切功,在物理生变化所引起的功。除体积功之外的一切功,在物理化学中统称为有用
11、功。化学中统称为有用功。 功的一般表达式为:功的一般表达式为: WXdx X是广义力:可以是牛顿力、压强、电压等;是广义力:可以是牛顿力、压强、电压等;dx是广义位移:可以是距离、体积、电量等。是广义位移:可以是距离、体积、电量等。体积功的计算:体积功的计算:基本公式:基本公式: 体积功是体系反抗外压所作的功;或者是环体积功是体系反抗外压所作的功;或者是环境施加于体系所作的功。境施加于体系所作的功。LWp dV外体系在恒定外压下一体系在恒定外压下一次膨胀到末态次膨胀到末态.体系在恒定外压体系在恒定外压p下膨胀到中间态,下膨胀到中间态,然后在外压等于然后在外压等于p2下膨胀至末态。下膨胀至末态。
12、恒温可逆膨胀恒温可逆膨胀例:(例:(1反抗恒外压膨胀反抗恒外压膨胀 2211()VLVWp dVpdVpVV外外外 (2先反抗恒外压先反抗恒外压p膨胀至膨胀至V,再反抗恒外压,再反抗恒外压p2膨胀至膨胀至V221122( )()VVLVVWp dVp dVp dVp VVp VV外外外 (3恒温可逆膨胀恒温可逆膨胀22211121()lnVVVLVVVVnRTWp dVpdp dVpdVdVnRTVV外 (4沿途径沿途径 p=a+b*V 可逆膨胀可逆膨胀2211222121()()()2VVLVVbWp dVpdVab V dVa VVVV 外常见过程常见过程(1恒温过程:恒温过程: T始始T
13、终终T环境环境 (dT0) 等温过程:等温过程: T始始T终终T环境环境(2恒压过程:恒压过程: p始始p终终p环境环境 (dp0) 等压过程:等压过程: p始始p终终p环境环境 恒外压过程:恒外压过程: p外不变外不变(3恒容过程:恒容过程:dV0(4绝热过程:绝热过程:Q0 dW=-dU W=-DU(5) 可逆过程可逆过程(reversible process): 体系从体系从A态经历某一过程到达态经历某一过程到达B态态,若能使体系状态完全还原的若能使体系状态完全还原的同时同时,环境的状态也完全还原环境的状态也完全还原,则体系从则体系从A到到B所经历的过程为所经历的过程为可逆过程可逆过程.
14、可逆过程的特点可逆过程的特点: :1 1 可逆过程的进程是由无数个无限小的过程所组成可逆过程的进程是由无数个无限小的过程所组成, ,体系体系 在整个可逆过程中在整个可逆过程中, ,始终无限接近平衡态始终无限接近平衡态; ; 2 2 可逆过程进行无限缓慢可逆过程进行无限缓慢; ; 3 3 可逆过程效率最高可逆过程效率最高 在相同条件下在相同条件下, ,从从A A膨胀到膨胀到B B的各条途径中的各条途径中, ,体系在可逆过体系在可逆过程中对外所作的功最大程中对外所作的功最大; ;若从若从B B压缩到压缩到A,A,则环境对体系作最则环境对体系作最小功小功. .严格意义上的可逆过程是不存在的严格意义上
15、的可逆过程是不存在的, ,可逆过程是一种理想过程可逆过程是一种理想过程. .但可逆过程在热力学理论中但可逆过程在热力学理论中, ,极其重要极其重要. .自然界中自然界中, ,有些过程很接近可逆过程有些过程很接近可逆过程, ,如物质的平衡条件下的如物质的平衡条件下的相变过程等相变过程等. .W1W2W3012341234Vp012341234Vp012341234VpAABBBA三种途径所作的功如下图所示三种途径所作的功如下图所示:体系经一次膨胀到末态体系经一次膨胀到末态, 体系所体系所作的功为作的功为: W1=p外外dV=p2(V2V1) =RT(10.25) =0.75RT=0.75*8.3
16、14*300 =1871 J/mol体系经二次膨胀到末态体系经二次膨胀到末态, 体系所体系所作的功为作的功为: W2=p外外dV =p3(V3V1)+ p2(V2V3) =RT(10.5)+RT(10 .5) =RT =2494 J/mol体系经无数次膨胀到末态体系经无数次膨胀到末态, 体系所体系所作的功为作的功为: W3=p外外dV= pdV =(RT/V)dV =RTln(V2/V1) =RTln4=3458 J/mol若体系沿若体系沿BA等温线逆向返回等温线逆向返回A态态, 体系还原,环境也还原,因环境体系还原,环境也还原,因环境付出的功等于其所得到的功:付出的功等于其所得到的功: W3
17、(逆逆)=pdV=RTln(V1/V2) =3458JW012341234VpBA012341234VpBAW第三条途径第三条途径: 当体系从当体系从A可逆膨胀至可逆膨胀至B时时 Q=W=3458J; 体系沿等温线从体系沿等温线从B回到回到AQ=W3458J.体系经历此循环体系经历此循环, 状态必还原状态必还原, 环境在两过程中的热和功的绝对值相等环境在两过程中的热和功的绝对值相等,但符号相反但符号相反, 两者正好完全抵消两者正好完全抵消, 故环境也完全还原故环境也完全还原. 正因为可以找到一条途径正因为可以找到一条途径, 使体系的状态还原的同时使体系的状态还原的同时, 环境的状环境的状态也同
18、时还原态也同时还原, 按可逆过程的定义按可逆过程的定义, 体系从体系从A经无数次无摩擦力膨经无数次无摩擦力膨胀达到胀达到B的过程是一可逆过程的过程是一可逆过程.可以证明可以证明, 对题中给出的第一和第二条途径对题中给出的第一和第二条途径, 无法找到一条途径无法找到一条途径, 使体系状态还原的使体系状态还原的同时同时, 环境的状态也同时还原环境的状态也同时还原, 故它们均为不可逆过程故它们均为不可逆过程.热力学第一定律热力学第一定律(first law of thermodynamics)(first law of thermodynamics) 自然界的能量既不能创生自然界的能量既不能创生,
19、,也不会也不会消灭消灭. . 热力学第一定律即为能量守恒原理热力学第一定律即为能量守恒原理. .第一定律可表述为第一定律可表述为: : 第一类永动机不第一类永动机不可能可能热力学第一定律热力学第一定律 物质的能量: 任何物质所包含的能量为: E = U+T+V E: 物质所含的全部能量,即总能量. T: 物质具有的宏观动能, 如: T=1/2mV2. V: 物质所具有的势能, 如重力势能等. U: 物质的内能,含粒子的平动能、转动能、振动 能、核运动能量、电子运动能量和分子间势能等.二、第一定律数学表达式二、第一定律数学表达式 当体系经历任一变化,从一始态到一末态当体系经历任一变化,从一始态到
20、一末态,体系的总能量将发生变化,对于一般化学体系的总能量将发生变化,对于一般化学体系,其体系,其T、V等能量不会变化,主要是等能量不会变化,主要是体系的内能发生变化,故体系总能量的变体系的内能发生变化,故体系总能量的变化等于体系内能的改变值:化等于体系内能的改变值: EU A AB B 因为宇宙的总能量是不变的,故体系能量的变化必来自于周围环境。若体系的能量增加,则环境的能量减少;若体系的能量减少;则环境的能量增加。 封闭体系与环境之间的能量交换形式只有热与功两种,故有: U QW dU dQdW上式即为热力学第一定律的数学表达式。其物理意义是: 自然界的能量是恒定的,若体系的内能发生了变化
21、(U),其值必定等于体系与环境之间能量交换量 (Q、W的总和。dU dQdW dQdWfp外外dV恒容、无有用功时恒容、无有用功时 dU dQV DUQVdU dQdWfp外外dV dQpdV d(U+pV)dQ恒压、无有用功时恒压、无有用功时 定义:定义: 焓焓enthalpy函数函数 HUpV dH dQp DHQp某一化学反应若在恒温恒压下某一化学反应若在恒温恒压下298.15K进展,放热进展,放热40000J,若使该反应恒温恒压通过可逆电池若使该反应恒温恒压通过可逆电池来完成,则吸热来完成,则吸热4000J。计算该反。计算该反应的焓变;应的焓变; 热容热容(heat capacity)
22、热容的定义:将物体温度升高一度所需要的热量称热容的定义:将物体温度升高一度所需要的热量称为物质的热容。为物质的热容。定义式:定义式:C Q/dT物质的热容随升温的条件不同而不同。常见的有等物质的热容随升温的条件不同而不同。常见的有等容热容和等压热容两种。容热容和等压热容两种。 CV(Q/dT)V = (dU/dT)V U=QV Cp(Q/dT)p = (dH/dT)p H=Qp 在化学中,最常用的是等压热容。在化学中,最常用的是等压热容。小小球球在连续的弹跳过程中在连续的弹跳过程中, 小球的重力势能转变为动能小球的重力势能转变为动能, 并不断地并不断地经碰撞转化为热能而传递给地面和小球本身经碰
23、撞转化为热能而传递给地面和小球本身. 最后最后,小球完全小球完全失去势能失去势能, 静止地停留在地面上静止地停留在地面上, 其机械能完全转变为热能其机械能完全转变为热能. 此过程是不可逆转的此过程是不可逆转的, 或者所逆转的几率几乎为零或者所逆转的几率几乎为零.热能热能热力学第二定律热力学第二定律自然界的自发过程自然界的自发过程: 我们周围的自然界许多过程都有方向性我们周围的自然界许多过程都有方向性, 如如: 水水 流流高处高处 低处低处h(判据判据)功功 热热 电电 流流高压高压 低压低压E功功 热热 热热 流流热处热处 冷处冷处T高温高温 低温低温 风风 流流高压高压 低压低压p功功 热热
24、人人 类类小孩小孩 老人老人t不可逆不可逆 二 热力学第二定律(second law of thermodynamics) 以上事实表明, 自然界的自发过程一般伴随着功转变为热和热能从高温流向低温的过程, 人们总结了自然界自发过程的特点, 建立了热力学第二定律. 克劳修斯(Claudius)说法: 不能使热从低温物体传至高温物体而无其它变化. 开尔文(Kelvin)说法: 不可能从单一热源取出热量使之完全变为功而无其它变化. 这两种说法是完全等价的. 热力学第二定律较简单的表述方法是: 第二类永动机不可能 第二类永动机与第一类永动机有别, 它并不违反能量守恒原理, 如从海水中吸取热量完全变为功
25、以开动船只等类的设想为第二类永动机. 证明: 若克氏说法不成立,则开氏说法也不成立. 用热力学第二定律证明, 采用反证法: 假定克氏说法不成立, 则热可以自动地从低温热源传至高温热源, 可设计图中装置.T1T2Q2Q1 W热机热机Q1 一热机在高温热源一热机在高温热源(T2)和低温热源和低温热源(T1)间工作间工作.热机从高温热源吸收热机从高温热源吸收Q2的热量的热量, 其中一部分其中一部分转变为功转变为功W, 剩余的热量剩余的热量Q1转递给低温热源转递给低温热源.若克氏说法不成立若克氏说法不成立, 可将可将Q1的热量自动地从的热量自动地从低温热源传至高温热源而不引起其它变化低温热源传至高温热
26、源而不引起其它变化.将以上两步骤联合起来将以上两步骤联合起来, 则可构成一个循环则可构成一个循环, 其总结果是其总结果是: 热机从高温热源取出热机从高温热源取出|Q2|Q1|的热量的热量, 并将其完全转化为功并将其完全转化为功W, 并不引起其并不引起其它任何变化它任何变化. 于是开氏说法也不成立于是开氏说法也不成立.但这便做成了第二类永动机但这便做成了第二类永动机, 这是违反热力这是违反热力学第二定律的学第二定律的, 故假定克氏说法不成立是错故假定克氏说法不成立是错误的误的. 注意注意: 在克氏和开氏说法中在克氏和开氏说法中, 均有不引起其它变化的限定条均有不引起其它变化的限定条件件,若不考虑
27、此限定条件若不考虑此限定条件, 热是可以完全转化为功的热是可以完全转化为功的. 如理想气体的等温可逆膨胀如理想气体的等温可逆膨胀, 体系从环境此唯一热源吸收热体系从环境此唯一热源吸收热量量, 并将其全部转化为并将其全部转化为W: Q=W=nRTln(V2/V1) 因为在等温下膨胀因为在等温下膨胀, 理想气体的内能不变理想气体的内能不变: U=0 但此过程并不违反热力学第二定律但此过程并不违反热力学第二定律, 因为此过程的结果是体因为此过程的结果是体系的体积变大了系的体积变大了, 因而留下了痕迹因而留下了痕迹, 这就是将热完全变为功这就是将热完全变为功所付出的代价所付出的代价. 热力学第二定律无
28、疑是自然界中最重要的基本原理热力学第二定律无疑是自然界中最重要的基本原理, 自然界自然界所发生的一切过程都必须遵守热力学第二定律所发生的一切过程都必须遵守热力学第二定律, 到目前为止到目前为止, 尚未发现违反热力学第二定律的实际过程尚未发现违反热力学第二定律的实际过程. ABRIRpV其微分式为其微分式为: (=为可逆过程为可逆过程, 为不可逆过程为不可逆过程)克劳修斯不等式克劳修斯不等式BAQST QdST熵熵(entropy) (entropy) 上式的物理含义为上式的物理含义为: :体系的熵变等于可逆过程体系的熵变等于可逆过程的热温商之和的热温商之和. .RQdSTRQST (dS)孤立
29、孤立0上式为熵判据上式为熵判据, 可用以判别过程的方向和限度可用以判别过程的方向和限度. 是热力是热力学上第一个判据学上第一个判据, 也是最重要的判据也是最重要的判据. 0 自发过程自发过程 (DS孤立孤立 =0 可逆过程可逆过程 0 因为此过程的总熵变大于零因为此过程的总熵变大于零, 由熵判据由熵判据, 此相变过程是一自发此相变过程是一自发的不可逆相变过程的不可逆相变过程.C6H6(l)268.15KC6H6(s)268.15KC6H6(l)278.65KC6H6(s)278.65K S3 S2 S1 S赫氏自由能赫氏自由能F F和吉氏自由能和吉氏自由能G G) 熵判据从原理上虽然可以解决一
30、切自然过程的方向和限度问熵判据从原理上虽然可以解决一切自然过程的方向和限度问题题, 但使用起来殊不方便但使用起来殊不方便, 为了热力学判据使用的方便为了热力学判据使用的方便, 人们人们由熵函数发展出赫氏自由能和吉氏自由能由熵函数发展出赫氏自由能和吉氏自由能. 一一. Helmholz自由能自由能: 设体系经历一恒温过程设体系经历一恒温过程: T=T1=.=T2=T环境环境 dS+dS环环=dSQ/T0 (熵判据熵判据)(1) 热力学第一定律热力学第一定律 Q= dU+W,代入代入(1)式式: dSdU/TW/T0 TdSdUW0两边同乘以两边同乘以T TdSdU W d(TS)dU W dT=
31、0, TdS=d(TS) d(UTS) W 令令: FUTS (2) F 即为赫氏自由能即为赫氏自由能(Helmholz free energy), 由德国科学家由德国科学家赫姆霍兹首先定义赫姆霍兹首先定义. 将将F代入熵判据式代入熵判据式: dF W(3) 或或FW恒温过程恒温过程(4) 对于等温对于等温,等容且无有用功的过程等容且无有用功的过程: ( FT,V,Wf=00 (dT=0, dV=0, Wf=0) (6)式也为热力学判别式式也为热力学判别式,其物理含义为其物理含义为: 在等温在等温,等容等容,不作有用功的条件下不作有用功的条件下, 体系的赫氏自由能只会体系的赫氏自由能只会自发地
32、减少自发地减少. 赫氏自由能判据一般用于等温等容过程赫氏自由能判据一般用于等温等容过程, 因为此判别式所涉因为此判别式所涉及到的均为体系的状态函数及到的均为体系的状态函数, 计算和使用都较方便计算和使用都较方便. 对于这些过程对于这些过程, 同样也可用熵判据来判断过程的方向同样也可用熵判据来判断过程的方向, 但因但因需求环境的熵变需求环境的熵变, 故使用起来比较麻烦故使用起来比较麻烦. 二二. Gibbs自由能自由能(Gibbs free energy)d(UTS) W 对于恒温恒压过程对于恒温恒压过程: TdSdUpdVWf d(TS)dUd(pV) Wf dT=0 dp=0 d(U+pVT
33、S) Wf 令令: GHTS(8) F + pV(9) G 称为吉布斯自由能称为吉布斯自由能 将将G代入熵判据不等式代入熵判据不等式: dGWf (10) 上式的物理含义是上式的物理含义是: 在恒温恒压下在恒温恒压下, 体系吉布斯自由能的减体系吉布斯自由能的减少等于体系可能作的最大有用功少等于体系可能作的最大有用功. 若若Wf=0, 有有: dG0(dT=0, dp=0, Wf=0)(11) G0(dT=0, dp=0, Wf=0)(12) (11)和和(12)均为自由能判据关系式均为自由能判据关系式. 在恒温在恒温,恒压和不作有用恒压和不作有用功的条件下功的条件下, 若若dG0: 为自发过程
34、为自发过程 =0: 可逆过程可逆过程 0: 不可能过程不可能过程 熵判据是所学的第一个热力学判据熵判据是所学的第一个热力学判据, 也是最重要的一个也是最重要的一个, 其它其它判据均由熵判据导出判据均由熵判据导出. 原则上原则上, 熵判据可以判断一切过程的方熵判据可以判断一切过程的方向和限度向和限度. 2.赫氏自由能判据赫氏自由能判据: (F)T,V0 (dT=0, dV=0 , Wf=0) 不自发过程不自发过程 三三. 吉氏自由能判据吉氏自由能判据: (G)T,p0 (dT=0, dp=0 , Wf=0) 不自发过程不自发过程 F和和G判据在使用时判据在使用时, 只需计算体系的状态函数值的改变
35、即只需计算体系的状态函数值的改变即可对过程进行判断可对过程进行判断, 故很方便故很方便, 但所付出的代价是其适用的但所付出的代价是其适用的范围大大缩小范围大大缩小, F判据只适用于等温等容过程判据只适用于等温等容过程; G判据只适用判据只适用 于等温等压过程于等温等压过程, 超出此范围去应用超出此范围去应用, 便会得到荒谬的结果便会得到荒谬的结果.热力学第三定律热力学第三定律19021902年美国科学家雷查德年美国科学家雷查德(T.W.Richard)(T.W.Richard)在研究在研究低温电池反应时发现电池反应的低温电池反应时发现电池反应的G G和和H H随随着温度的降低而逐渐趋于相等着温
36、度的降低而逐渐趋于相等, ,而且两者对温而且两者对温度的斜率随温度同趋于一个定值度的斜率随温度同趋于一个定值: :零零. . G= G= H HT TS S limT0limT0G= G= H HlimT0TlimT0TS S = = H H(T0K)(T0K)由热力学函数的定义式由热力学函数的定义式, , G G和和H H当温度趋于当温度趋于绝对零度时绝对零度时, ,两者必会趋于相等两者必会趋于相等, , 但趋于相同但趋于相同的方式可以有所不同的方式可以有所不同. . 雷查德的实验证明对于所有的低温电池反应雷查德的实验证明对于所有的低温电池反应, , G G均只会以一种方式趋近于均只会以一种
37、方式趋近于H.H. 上图中给出三种不同的趋近方式上图中给出三种不同的趋近方式, 实验的结果支持最后一种实验的结果支持最后一种方式方式, 即曲线的斜率均趋于零即曲线的斜率均趋于零. limT0K(G/T)p= limT0K(H/T)p=0 limT0K(G/T)p= limT0K(S)T=0 上式的物理含义是上式的物理含义是: 但反应体系的温度趋于绝对零度时但反应体系的温度趋于绝对零度时, 反应反应的熵变趋于零的熵变趋于零, 即反应物的熵将等于产物的熵即反应物的熵将等于产物的熵. 若将此结果推广到所有的化学反应若将此结果推广到所有的化学反应, 即是即是: 一切化学反应的熵变当反应温度趋于绝对零度
38、时也趋于零一切化学反应的熵变当反应温度趋于绝对零度时也趋于零.T H G0KT H G0KT H G0K 既然所有反应的熵变在既然所有反应的熵变在0K时将为零时将为零, 说明在说明在0K时所有物质时所有物质的熵相等的熵相等, 因而可以合理地定义物质在因而可以合理地定义物质在0K时的熵值为零时的熵值为零. 普朗克于普朗克于1912年提出年提出: 物质在绝对零度时的熵等于零物质在绝对零度时的熵等于零. limT0KS=0(1) (1)式可以视为热力学第三定律数学表达式式可以视为热力学第三定律数学表达式. 热力学第三定律的表述为热力学第三定律的表述为: 0 K时完美晶体的熵为时完美晶体的熵为0. 不
39、满足要求的物质不满足要求的物质,如如NO, 在在0K下下, 熵值并不为零熵值并不为零, 任具有一任具有一定的数值定的数值, 这些物质在这些物质在0K的数值称为残余熵的数值称为残余熵. 由热力学第三定律所求得的物质的熵称为规定熵由热力学第三定律所求得的物质的熵称为规定熵. 规定熵可用热化学方法测定得到规定熵可用热化学方法测定得到, 也可由统计热力学理论直接也可由统计热力学理论直接计算得到计算得到. 规定熵的求算方法为规定熵的求算方法为: S=0T QR/T =0T (Cp/T)dT(2) 上式表明上式表明, 只要获得物质从只要获得物质从0K开始的等压热容的数据即可得开始的等压热容的数据即可得到物
40、质的熵到物质的熵. 若物质在若物质在0T温度区间有相的变化温度区间有相的变化, 则需要将相则需要将相变的熵变加和进去变的熵变加和进去. 如气体的熵可由下式求得如气体的熵可由下式求得: S=0T(熔熔) (Cp(s)/T)dT+H熔熔/T熔熔+ T(熔熔)T(沸沸)(Cp(l)/T)dT+H沸沸/T沸沸+ T(沸沸)T (Cp(g)/T)dT(3) Sm0是标准状态下物质的规是标准状态下物质的规定熵定熵. 标准状态的规定为标准状态的规定为: 温度为温度为T, 压力为压力为1p0的纯物质的纯物质. 量热法测定熵的过程如图量热法测定熵的过程如图:TS0 S(熔熔) S(沸沸)熔点熔点固体固体沸点沸点
41、液体液体从从0熔点测得固体的熵熔点测得固体的熵; 测定固体熔化过程的熵测定固体熔化过程的熵;测定液态段的熵测定液态段的熵;测定液体气化的熵测定液体气化的熵;测定气态的熵测定气态的熵.气体气体TSm0热力学基本关系式热力学基本关系式 讨论封闭体系讨论封闭体系, 且只有简单变化且只有简单变化, 不作有用功不作有用功. dU=QW =QpdVWf=0 设体系经历可逆过程到达末态设体系经历可逆过程到达末态: Q=TdS可逆过程可逆过程: dS= Q/T dU=TdSpdV上式是热力学第一定律和第二定律联合表达式上式是热力学第一定律和第二定律联合表达式. dH=d(U+pV)=dU+pdV+Vdp =T
42、dSpdV+pdV+Vdp dH=TdS+Vdp 用类似的方法可推出用类似的方法可推出F和和G的全微分表达式的全微分表达式. 热力学四个基本关系式热力学四个基本关系式(Gibbs关系式关系式)如下如下: dU=TdSpdV(1) dH=TdS+Vdp(2) dF=SdTpdV(3) dG=SdT+Vdp(4) 基本关系式的适用范围基本关系式的适用范围: 简单封闭体系简单封闭体系,只作体积功只作体积功. 因为关系式中全为状态函数因为关系式中全为状态函数, 故只与体系的状态有关故只与体系的状态有关, 与经与经历的途径无关历的途径无关, 故基本关系式可用于任何过程始末态的热力故基本关系式可用于任何过
43、程始末态的热力学函数值的求算学函数值的求算. 基本关系式实质上是基本关系式实质上是U、H、F和和G的数学全微分展开式的数学全微分展开式, 对对于简单的封闭体系于简单的封闭体系, 体系的状态只需两个独立变量即可决定体系的状态只需两个独立变量即可决定, 这两个变量可以任意选取这两个变量可以任意选取. 从四个关系式的微分变量可知从四个关系式的微分变量可知, 对不同的状态函数对不同的状态函数, 在作全微分展开时在作全微分展开时, 选取的独立变量是选取的独立变量是不一样的不一样的. U =U(S,V) H =H(S,p) F = F(T,V) G =G(T,p) 以内能为例进行全微分展开以内能为例进行全
44、微分展开: dU=(U/S)V dS+ (U/V)S dV 与与(1)式式dU=TdSpdV对照对照, 可得可得: T= (U/S)V p= (U/V)S 由基本关系式可推出类似关系式由基本关系式可推出类似关系式: T= (U/S)V = (H/S)p (5) p=(U/V)S = (F/V)T (6) V= (H/p)S = (G/p)T (7) S=(F/T)V = (G/T)p (8) 二二. 麦克斯韦关系式麦克斯韦关系式(Maxwells relations): 多元函数的高阶微商与求导的秩序无关多元函数的高阶微商与求导的秩序无关, 如如: u=u(x,y) du=(u/x)ydx+
45、(u/y)xdy=Mdx+Ndy 2u/xy= 2u/yx M/y=N/x 将上述关系运用于热力学基本关系式将上述关系运用于热力学基本关系式: (T/V)S=(p/S)V (9) (T/p)S = (V/S)p (10) (S/V)T = (p/T)V (11) (S/p)T =(V/T)p (12) 以上四个关系式便是以上四个关系式便是Maxwell关系式关系式, 由这些关系式由这些关系式, 可以推可以推出许多有用的热力学公式出许多有用的热力学公式, 而且而且, 通过麦克斯韦关系式可以从通过麦克斯韦关系式可以从易测量推出难测定的量易测量推出难测定的量. 例例: 试证明试证明:(U/V)T=T(p/T)Vp 解解: 有热力学基本关系式有热力学基本关系式: dU=TdSpdV 在等温条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化妆品标识管理规定释义-规章制度
- 房地产中介协议(新房销售2025年)
- 电池回收咨询专属委托协议
- 2025至2030智能合约在供应链金融中的风险控制机制研究报告
- 2025-2030全球与中国影城主题公园行业发展现状及趋势预测分析研究报告
- 江苏扬州市2025-2026学年度第一学期高一生物期末试卷(试卷+解析)
- 河南洛阳市2025-2026学年第一学期期末考试高二英语试题(试卷+解析)
- 2025-2030医疗保险行业运营效率提升及多层次医疗保障体系建设与医疗健康产业发展规划报告
- 2025-2030医疗保险产品条款比较分析理赔纠纷处理机制改进方案研究
- 2025-2030医疗保健制造行业市场发展趋势及产品研发方案与知识产权管理策略研究
- GA 2116-2023警用服饰礼服钮扣
- JT-T-325-2018营运客运类型划分及等级评定
- 地球物理勘探与军事勘察技术研究
- DL-T5440-2020重覆冰架空输电线路设计技术规程
- (高清版)DZT 0216-2020 煤层气储量估算规范
- 浙江华港染织集团有限公司技改年产针织印染面料16860吨、机织印染面料13600万米高档印染面料项目环境影响报告
- 商业地产-天津津湾广场一期都市综合体业态配比方案方案-30-11月
- 中国机器人可靠性信息报告 2022
- 堇青蜂窝陶瓷微观结构及热膨胀系数的研究
- 电梯维修保养组织方案
- GB/T 9115-2010对焊钢制管法兰
评论
0/150
提交评论