第十章电能质量的提高_第1页
第十章电能质量的提高_第2页
第十章电能质量的提高_第3页
第十章电能质量的提高_第4页
第十章电能质量的提高_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十章 电能质量的提高第一节 电能质量标准与频率调整第二节 供电电压偏差及其调节第三节 电压波动和闪变及其降低第四节 公用电网谐波及其抑制第五节 三相电压不平衡及其补偿本章小结一、电能质量标准 电压质量实际电压与标称电压间在幅值、波形和相位上的偏差,反应供电企业向用户供给的电力是否合格。 电流质量对用户取用电流提出恒定频率、正弦波形要求,并使电流波形与供电电压同相位,保证系统高功率因数运行,有助于降低电能损耗。第一节 电能质量标准与频率调整电能质量 电压质量及供电可靠性 供电质量 用电质量 服务质量 电流质量 用户义务 一般地,电能质量可以定义为:导致用电设备故障或不能正常工作的电压、电流或频

2、率的偏差,其内容包括频率偏差、电压偏差、电压波动与闪变、三相不平衡、暂时或瞬态过电压、波形畸变(谐波)、电压暂降、中断、暂升以及供电连续性等。在现代电力系统中,电压暂降和中断已成为最重要的电能质量问题。现行八项电能质量国家标准:GB/T123252008电能质量 供电电压偏差 GB/T123262008电能质量 电压波动和闪变 GB/T145491993电能质量 公用电网谐波 GB/T 243372009电能质量 公用电网间谐波 GB/T155432008电能质量 三相电压不平衡 GB/T159452008电能质量 电力系统频率偏差GB/T184812001电能质量 暂时过电压和瞬态过电压GB

3、/T 301372013 电能质量 电压暂降与短时中断 。 二、电力系统的频率调整 电力系统频率偏差电力系统频率的实际值与标称值之差。 电力系统频率偏差主要反映发电有功功率和消耗的有功功率(包括负荷、厂用电以及电网中有功功率损耗)之间平衡关系。同时也反映频率控制的技术水平。电网容量越大,负荷相对变化越小,则频率控制越容易。 电力系统中的发电与用电设备只有在额定频率附近运行时,才能发挥最好的功能。系统频率过大的变动,对用户和发电厂的运行都将产生不利的影响。 系统频率变化对用户的不利影响主要有三个方面:引起电动机转速的变化。使电动机功率降低,传动机械出力降低;影响电子设备的准确性和工作性能。 GB

4、/T159452008电能质量 电力系统频率偏差规定:电力系统正常运行条件下频率偏差限值为0.2Hz。当系统容量较小时,偏差限值可以放宽到0.5Hz。 电力系统频率的变化主要是由有功负荷变化引起的。 根据负荷的变动进行电力系统的频率调整,分为一次、二次、三次调整。 如果电力系统发生短路故障,或用电负荷突然大幅度增加时,电网频率将显著降低,致使电力系统不能正常运行,这时候也可以通过设置低频减载装置来使电力系统的频率得到有效的恢复。一、电压偏差的含义 产生电压偏差的主要原因是正常的负荷电流或故障电流在系统各元件上流过时所产生的电压损失所引起的。 实际电压偏高或偏低,对运行中的电气设备会造成不良的影

5、响。 对照明灯:影响光源寿命或发光效率 对电动机:导致铁芯或绕组发热 对其他电气设备:使其运行性能发生变化 对电子设备:使电子元件特性改变 第二节 供电电压偏差及其调节 电压偏差是系统某点的实际运行电压相对于系统标称电压的偏差相对值,以百分数表示,即renn%100UUUU二、变压器对电压偏差的影响 我国现行的有载调压变压器分接头,110kV为81.25%(17个分接位置),35kV为32.5%(7个分接位置),10(6)kV为42.5%(9个分接位置)。 普通无励磁调压变压器分接头为22.5%(5个分接位置)或5%(3个分接位置),在投入运行前选择一个合适的分接头。20t2n%(1) 100

6、UUU 由于变压器分接头选择而引入的电压偏差量可按下式进行计算: 变压器一次侧分接头电压 Ut(1t)U1n 变压器二次侧的空载电压一次侧分接头所对应的电压增减量 r2.T1nt2n(1) 100UUUU变压器中的电压损失按式计算: TTT2n%10PRQXUU22nT2n%100UUUU 当变压器一次侧分接头所加电压为额定电压时,由变压器本身所产生的总电压偏差量为 变压器负载时二次侧电压为: r2.Tr2.TTT211n12ntt%()=100100UUUUUUUUUUUr2.TT1n2nt2n%1001100UUUUUUr2.T1nTt2n(1) 100%UUUU UtT%UU三、电压偏差

7、的计算GABCUA%UT%DUD%-2-6-40246UA%UW1%UW2%U%UW1%UT%UD%UW 2%指定地点E的电压偏差可由下式计算: E%UUU 四、电压偏差限值及调节 GB123252008电能质量 供电电压允许偏差中规定,供电部门与用户的产权分界处或供用电协议规定的电能计量点的供电电压偏差限值为: 35kV及以上供电电压:电压正、负偏差绝对值之和为10%; 20kV及以下三相供电电压偏差:7%; 220V单相供电电压偏差:+7%,10%。(一)电压偏差限值用电设备端子电压偏差限值表名 称电压偏差限值()名 称电压偏差允许值()电动机: 正常情况下 55照明:一般工作场所远离变电

8、所的小面积一般工作场所应急照明、安全特低电压供电的照明道路照明55510510510 (二)电压调节的方式 对中枢点的电压进行监视和调节。 调压方式:常调压:不管中枢点的负荷怎样变动,都要保持中枢点的电压偏差为恒定值;0 .3 8 k V21Ul2% = 66 1 0 k V5 .5Ul1% = 1 4a )最 大 负 荷 时最 小 负 荷 时UT% = 3+8.5+10.5= +10-1= +9= +10-30最大负荷最小负荷-6= +7+1.5-7b)10+7426-2-40-8-68Ut%-UT%Ut%-UT%U%+7108+1.5-6+3.50+9+7-5.5-70420-4-2-6-

9、86c)U%逆调压:在最大负荷时,升高母线电压,在最小负荷时,降低母线电压。(三)电压调节的方法 对于电力用户的供配电系统,电压偏差调节主要以下两方面入手。1. 减小线路电压损失 2. 合理选择变压器的分接头进行供配电系统设计时,应降低系统的阻抗(如增大导线或电缆的截面积;尽量使高压线路深入负荷中心,减少低压配电距离;采用多回路并联供电等) 采取无功功率补偿等措施减少线路电压损失,缩小电压偏差的范围。宜使系统三相负荷平衡,减少中性点电位偏移产生的电压偏差。 合理选择无励磁调压变压器的电压分接头或采用有载调压变压器可将供配电系统的电压调整在合理的水平上,但这只能改变电压水平而不能缩小偏差范围。

10、例题例题10-1 某用户10/0.38kV变电所安装有1台SCB10-1000/10干式配电变压器,电压比1022.5%/0.4kV。已知变压器最大负荷率0.85,最小负荷率为0.5,负荷功率因数0.90。变压器高压侧的实际电压,在最大负荷时为10.2kV,最小负荷时为10.4 kV。若变压器分接头位置处于“0”,则变压器低压母线的电压偏差值在最大负荷时和最小负荷时各为多少?现要求变压器低压母线的电压偏差,在最大负荷时不低于0,最小负荷时不大于5。试选择配电变压器的分接头。 解:(1)计算配电变压器的电压损失kar.T100100 8.13kW %=0.8131000kVAPuSrka %=%

11、= 60.813 =5.945uUu2222()()T.maxmaxar%=%cos +%sin=0.850.813 0.95.945 0.4362.83Uuu()()T.minminar%=%cos + %sin=0.50.813 0.9 5.945 0.4361.66Uuu()()(2)计算配电变压器低压母线的电压偏差值2max1maxtTmax%=052.832.17UUUU 2min1mintTmin%=45 1.667.34UUUU 电压偏高,超出标准规定的电压偏差限值(7)。 (3)选择配电变压器的分接头Tmaxr2.T1max1ntmax2max.al%2.83()0.4kV (

12、10.2kV10kV)100100=10.44kV0.38kVUUUUUUTminr2.T1min1ntmin2min.al%1.66()0.4kV (10.4kV10kV)100100=10.23kV0.4kVUUUUUU结论:选择+2.5%分接头,分接头电压为(1+0.025)10kV=10.25kV。 一、基本概念第三节 电压波动和闪变及其降低 (一)电压波动 电压波动指系统电压方均根值(有效值)一系列的变动或连续的改变。电压波动用电压变动值d和电压变动频度r来综合衡量。 电压变动d指电压方均根值曲线上相邻两个极值电压之差,以系统标称电压的百分数表示。即n100%UdU 电压变动频度r指

13、单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。不同方向的若干次变动,如间隔时间小于30ms,则算一次变动。 波动负荷指生产(或运行)过程中周期性或非周期性地从供电网中取用变动功率的负荷。例如:炼钢电弧炉、轧钢机、电弧焊机等。 波动负荷在系统阻抗上引起电压降的波动,导致系统公共连接点的电压出现波动现象。当负荷波动时,系统阻抗越大(或短路容量越小),则其所导致的电压波动越大,这决定于供电系统的容量,供电电压,用户负荷位置、类型、大功率用电设备的起动频度等。 电压波动的危害表现在:照明灯光闪烁引起人的视觉不适和疲劳,影响工效;可使电子设备和电子计算机无法正常工作;电动机转速不均匀,

14、影响电机寿命和产品质量;影响对电压波动较敏感的工艺或试验结果。电压波动是由波动负荷所引起的。(二)闪变 闪变指电压波动引起灯光照度不稳定造成的视(觉)感(受)。 短时间闪变值 基本记录周期为10min 长时间闪变值 基本记录周期为2h 一般采用闪变仪(一种测量闪变的专用仪器)进行测量。 (三)电压变动和闪变的限值按GB/T123262008电能质量 电压波动和闪变规定。 任何一个波动负荷用户在电力系统公共连接点产生的电压变动,其限值和电压变动频度、电压等级有关。 二、电压波动的测量和估算 当电压变动频度较低且具有周期性时,可通过电压方均根值曲线U(t)的测量,对电压波动进行评估。单次电压变动可

15、通过系统和负荷参数进行估算。当已知三相负荷的有功功率和无功功率的变化量时 LiLi2n100%RPXQdU在高压电网中,一般LLXR远大于,则ik100%QdS在无功功率的变化量为主要成分时(例如大容量电动机起动) ik100%SdS三、电压波动和闪变的降低1.采用合理的接线方式如对波动负荷采用专线供电;与其它负荷共用配电线路时,降低配电线路阻抗;较大功率的波动负荷或波动负荷群与对电压波动、闪变敏感的负荷分别由不同的变压器供电;对于大功率电弧炉的炉用变压器由短路容量较大的电网供电等。 2.采用静止无功补偿器 静止无功补偿器(SVC)是无功功率快速补偿的新技术,可以减少无功功率冲击引起的电压变动

16、。 静止无功补偿器由特殊电抗器和电容器组成,有的是两者之一为可控的,有的是两者都是可控的,是一种并联联接的无功功率发生器和吸收器。 FC-TCR补偿器的原理接线图 TSC-TCR的原理接线图 近年来,电力系统中主要应用的静止补偿器有自饱和电抗器型(SR)和可控硅控制电抗器型(TCR)两种。其中,可控硅控制的并联静止补偿器,又分为两种类型:固定联接电容器(FC)加可控硅控制的电抗器(FC-TCR)和可控硅开关操作的电容器(TSC)加可控硅控制的电抗器(TSC-TCR)。自饱和电抗器型的原理接线图3.采用静止无功发生器 静止无功发生器(SVG)是在静止型无功补偿器(SVC)的基础上发展起来的。 S

17、VG抑制电压波动和闪变的性能约为同容量SVC的23倍,是改善电能质量的有效手段。4.采用动态电压调节装置 动态电压调节装置(DVR),也称作动态电压恢复装置,是一种基于柔性交流输电技术(FACTS)原理的新型电能质量调节装置,主要用于补偿供电电网产生的电压跌落,闪变和谐波等,有效抑制电网电压波动对敏感负载的影响,从而保证电网的供电质量。四、电动机起动时的电压下降 电动机起动时,在其供电端子处及配电系统中要引起电压下降。 电动机起动时,配电母线上的电压应符合下列规定:在一般情况下,电动机频繁起动时不宜低于系统标称电压的90%;电动机不频繁起动时,不宜低于标称电压的85%。配电母线上未接照明或其他

18、对电压波动较敏感的负荷,且电动机不频繁起动时,不应低于标称电压的80%。配电母线上未接其他用电设备时,可按保证电动机起动转矩的条件决定;对于低压电动机,尚应保证接触器线圈的电压不低于释放电压。电动机全压起动供电系统示意图 stWP2stMW11SXSU起动回路的额定输入容量 配电母线短路容量 rTkWrTTkSSSxS电动机起动时配电母线电压下降为 kWcstWWkWBcstSQuuSQS电动机起动时其电源端子处电压下降为 ststMstWstMSuuS一、谐波的产生与危害第四节 公用电网谐波及其抑制 谐波分量一个非正弦周期电气量的傅立叶级数式中阶次大于1的分量,其频率为基波(周期量的傅立叶级

19、数的一次分量)频率的整倍数,也称为高次谐波。 随着现代工业的高速发展,电力系统的非线性负荷日益增多。非线性负荷产生的谐波电流注入到电网,使公用电网的电压波形产生畸变。 电网的谐波污染所产生的后果较为严重: 继电保护和自动装置产生误动或拒动、电气设备产生附加损耗和发热、谐波电流在电网中而增加损耗、电网中谐波对周围的通信系统产生干扰、谐波使电网中广泛使用的各种仪表产生附加误差、增加了电网中发生谐波谐振的可能 。二、谐波评价与限值 电网中谐波的严重程度按GB/T145491993电能质量 公用电网谐波规定,通常用单次谐波含有率和总谐波畸变率来表示。 1100%hhUHRUU1100%hhIHRII2

20、H2()hhUU2H2()hhII电压/电流谐波总含量 第h次谐波电压/电流含有率 电压/电流总谐波畸变率 Hu1100%UTHDUHi1100%ITHDI表10-6 公共电网谐波电压(相电压)限值电网标称电压(kV)电压总谐波畸变率()各次谐波电压含有率()奇次偶次0.385.04.02.06104.03.21.635663.02.41.21102.01.60.8表10-7 注入公共连接点的谐波电流限值标准电压(kV)基准短路容量MVA谐波次数及谐波电流允许值(A)2345678910111213141516170.381078623962264419211628132411129.7186

21、10043342134142411118.5167.1136.16.85.31010100262013208.5156.46.85.19.34.37.93.74.13.26.03525015127.7125.18.83.84.13.15.62.64.72.22.51.93.66650016138.1135.49.34.14.33.35.92.75.02.32.62.03.8110750129.66.09.64.06.84.03.22.44.32.03.71.71.91.52.8根据GB/T 145491993规定 当电网公共连接点的最小短路容量不同于表10-8基准短路容量时,应按照下式修正表中

22、的谐波电流限值:k.minddhSIIS 两个谐波源的同次谐波电流在一条线路的同一相上叠加,当相位角已知时,按下式计算:221112h+2coshhhhhIIII I 当相位角不确定时,按下式计算:221112+hhhhhhIIIk I I按表10-9取值hk 同一公共连接点的每个用户向电网注入的谐波电流允许值按此用户在该点的协议容量与其公共连接点的供电设备容量之比进行分配,分配的计算方法如下:tihihSIIS1()按表10-10取值 例题10-2 某企业35kV变电所采用1路35kV电源供电,已知变电所35kV侧最小短路容量为500MVA、10kV侧最小短路容量为150MVA。该变电所10

23、kV母线上接有2组整流设备,整流器采用三相全控桥式,已知1#整流器10kV侧5次谐波电流为20A,2#整流器10kV侧5次谐波电流为30A,试计算该变电所10kV侧和35kV侧的5次谐波电流值。若该用户的用电协议容量为16MVA,而35kV侧公共连接点的的供电设备容量为50MVA,试判断该用户注入35kV电网中的谐波电流是否超出标准规定。 解:两个谐波源的5次谐波电流在10kV母线上叠加22225.10kV5.15.15 5.1 5.2+= 2030 +1.28 20 50A=45.4AIIIk I I5.10kV5.35kVT45.4=13.6A3510.5IAIK()短路容量为500MVA

24、时,35kV电网的5次谐波电流限值为550012A=24A250I 允许该用户向电网注入的谐波电流允许值为1.25.15t16=24=9.3A50iSIIS11()()三、并联电容器对谐波的放大作用 在供配电系统中,并联电容器作为无功补偿设备已得到了广泛的应用。系统中的电容器,一方面由于其谐波阻抗小,系统高次谐波电压会在其中产生明显的高次谐波电流,使电容器过热,严重影响其使用寿命;同时电容器的切入使用也可能引起系统谐波严重放大。XC.h=1/(h0C) 电容器第h次谐波电抗 第h次谐波电压在电容器中产生的谐波电流IC.h=Uh/XC.hUhh0C谐波严重放大CLR2min(1.31.5)XXh

25、 对于整流装置,hmin=5,可取XLR=(56)% XC ,对于含有三次谐波的系统,可取XLR=(1213)% XC 。 在含有谐波的供配电系统中,应注意适当选择其电容器的参数,防止其出现过电流和过电压,同时兼顾无功补偿的要求和消除谐波放大,可在电容器支路串联电抗器,通过选择电抗器值使电容器回路在最低次谐波频率下呈现出感性,就可消除谐波的放大现象。电抗器的电感量: 四、谐波的抑制1.减少大功率静止变流器产生的谐波提高整流变压器二次侧的相数和增加变流器的脉动数。多台相数相同的整流装置,使整流变压器的二次侧有适当的相角差。2.装设无源电力谐波滤波器 a)单调谐滤波器 b)二阶高通滤波器 c)C型

26、高通滤波器3.装设有源电力滤波器iSGiFLiL系 统 电 源有 源 滤 波 器负 荷 谐 波 源A P F 有源电力滤波器分并联型和串联型两种,实际应用中多为并联型。 并联型有源电力滤波器是一种向电网注入补偿谐波电流,以抵消负荷所产生的谐波电流的滤波装置,其主要电路由静态功率变流器(逆变器)构成,故具有半导体功率变流器的高可控性和快速响应性。 FS(d )(c )(b )(a )HLttttiiii谐波电流的补偿谐波电流的补偿 五、公用电网间谐波简介 间谐波分量指对周期性交流量进行傅立叶级数分解,得到频率不等于基波频率整数倍的分量。 常见的间谐波干扰源主要有:变流装置 、交流电弧炉 、通断控

27、制的电气设备。 间谐波具有谐波引起的所有危害。一般来说其危害主要表现在:产生闪变;导致显示器闪烁;造成滤波器谐振、过负荷;引起通讯干扰;引起电动机发电机附加力矩;引起过零点监测误差;引起感应线圈噪声;影响脉冲接收器正常工作。 我国根据IEC相关标准发布的国家标准GB/T243372009电能质量 公用电网间谐波已于2010年6月1日开始实施。该规定对间谐波的含量、测量方法和测量仪器的精度做了相关规定。一、基本概念第五节 三相电压不平衡及其补偿 电力系统正常运行时三相电路经常出现一些不平衡状态,这是由于三相负荷的不平衡以及电力系统元件参数三相不对称所致。这类不平衡有别于不对称故障状态。 电压不平衡指三相电压在幅值上不同或相位差不是1200,或兼而有之。 在电力系统中,三相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论